
1

1

CS100J    09 March, 2006
More on Loops

Reading: Secs 7.1–7.4

A Billion. The next time you hear someone in government rather casually
use a number that includes the word "billion", think about it.

• A billion seconds ago was 1959.

• A billion minutes ago Jesus was alive.

• A billion hours ago our ancestors were living in the Stone Age.

• A billion days ago no creature walked the earth on two feet.

• A billion dollars lasts 8 hours and 20 minutes at the rate our government
spends it.

2

On “fixing the invariant”

// {s is the sum of 1..h}
s=  s + (h+1);
h= h+1;
// {s is the sum of 1..h}

3

On “fixing the invariant”

// {s is the sum of h..n}     s = 5 + 6 + 7 + 8      h = 5, n = 8
s= s + (h-1);
h= h-1;
// {s is the sum of h..n} s = 4 + 5 + 6 + 7 + 8      h = 4, n = 8

4

Loop pattern to process a range m..n–1
(if m = n, the range is empty)

int h= m;
// invariant: m..h–1 has
//           been processed
while (h != n) {
     Process h;
     h= h+1;
}
// { m..n–1 has been processed
}

5..4

5..5

5..6

5..7

// invariant: m..h–1 has
//           been processed
for (int h= m; h != n; h != d+1) {
     Process h;
}
// { m..n–1 has been processed }

5

Loop pattern to process a range m..n
(if m = n+1, the range is empty)

int h= m;
// invariant:  m..h–1
//    has been processed
while (h != n+1) {
     Process h;
     h= h+1;
}
// { m..n has been processed }

// invariant:  m..h–1
//    has been processed
for (int h= m; h <= n; h= h+1) {
     Process h;
}
// { m..n has been processed }

6

Decimal  Octal Binary
001           001 1  = 2**0
002         002 10  = 2**1
003         003 11
004       004 100  = 2**2
005       005 101
006       006 110
007       007 111
008     010 1000 = 2**3
009     011 1001
010     012 1010
011     013 1011
012     014 1100
013     015 1101
014     016 1110
015    017 1111
016   020 10000 = 2**4
032 026 100000 = 2**5
…
256     400 100000000  = 2**8

2**n in binary is:

1 followed by n zeros.

2**15 is 32768 (in decimal).

n is called the (base 2) logarithm
of 2**n.

The log of 32768 = 2**15 is 15.

To translate an octal
number into a binary

number, just translate each
of digits:

octal 745

is

binary 111100101



2

7

Logarithmic algorithm to
calculate b**c, for c >= 0

/** = b**c, given c ≥ 0 */
public static int exp(int b, int  c) {
    if (c ==  0) return 1;

}

Rest on identities:

b**0 = 1

b**c =  b  *  b**(c-1)

for even c, b**c = (b*b)**(c/2)

 3*3 *  3*3 * 3*3  * 3*3  = 3**8

(3*3)*(3*3)*(3*3)*(3*3) = 9**4

Algorithm processes binary
representation of c

Suppose c is 14   (1110 in binary)

1. Test if c is even: test if last bit is 0

2. To compute c/2 in binary, just
delete the last bit.

Algorithm processes each bit of c
at most twice.

So if c is 2**15 = 32768, algorithm

has at most 2*15 = 30 recursive
calls!

Algorithm is logarithmic in c, since
time is proportional to log c

 if (c%2 = 0) return exp(b*b, c/2);
return b * exp(b, c–1);

8

Iterative version of logarithmic algorithm to
calculate b**c,
for c >= 0 (i.e. b multiplied by itself c times)

/** set z to b**c, given c ≥ 0 */
int x= b; int y= c; int z= 1;
// invariant:  z * x**y = b**c  and 0 ≤ y ≤ c
while (y != 0) {
     if (y % 2 == 0)

{ x= x * x; y= y/2;  }
     else { z= z * x; y= y – 1; }
}
// { z = b**c }

Rest on identities:

b**0 = 1

b**c =  b  *  b**(c-1)

for even c, b**c = (b*b)**(c/2)

 3*3 *  3*3 * 3*3  * 3*3  = 3**8

(3*3)*(3*3)*(3*3)*(3*3) = 9**4

Algorithm is logarithmic in c, since time is proportional to log c

9

Iterative version of logarithmic algorithm to
calculate b**c,
for c >= 0 (i.e. b multiplied by itself c times)

/** set z to b**c, given c ≥ 0 */
int x= b; int y= c; int z= 1;
// invariant:  z * x**y = b**c  and 0 ≤ y ≤ c
while (y != 0) {
     if (y % 2 == 0)

{ x= x * x; y= y/2;  }
     else { z= z * x; y= y – 1; }
}
// { z = b**c }

Rest on identities:

b**0 = 1

b**c =  b  *  b**(c-1)

for even c, b**c = (b*b)**(c/2)

 3*3 *  3*3 * 3*3  * 3*3  = 3**8

(3*3)*(3*3)*(3*3)*(3*3) = 9**4

Algorithm is logarithmic in c, since time is proportional to log c
10

Calculate quotient and remainder when dividing x by y

                 x/y = q + r/y                         21/4= 4 + 3/4

Property: x = q * y  + r   and  0 ≤ r < y

/** Set q to  and r to remainder.
      Note: x >= 0 and y > 0 */
int q= 0; int r= x;
// invariant:  x = q * y + r    and 0 ≤ r
while (r >= y) {

r= r – y;
q= q + 1;

}
// { x = q * y + r    and   0 ≤ r < y }


