CS100J 09 March, 2006
More on Loops
Reading: Secs 7.1-7.4

A Billion. The next time you hear someone in government rather casually
use a number that includes the word "billion", think about it.

« A billion seconds ago was 1959.

A billion minutes ago Jesus was alive.

* A billion hours ago our ancestors were living in the Stone Age.
* A billion days ago no creature walked the earth on two feet.

* A billion dollars lasts 8 hours and 20 minutes at the rate our government
spends it.

On “fixing the invariant”

/1 {s is the sum of 1..h}
s= s+ (h+1);

h=h+1;

/1 {s is the sum of 1..h}

On “fixing the invariant”

/I {sisthe sumofh.n} s=5+6+7+8 h=5n=8
s=s+ (h-1);

h=h-1;

/l {sisthe sumof h.n}s=4+5+6+7+8 h=4n=8

Loop pattern to process a range m..n—1
(if m = n, the range is empty)

int h=m; // invariant: m..h—1 has
// invariant: m..h—1 has " been processed
been processed for (int h=m; h !=n; h !=d+1) {
while (h !=n) { Process h;
Process h; }
h=h+1; // { m..n—1 has been processed }
} 5.4
// { m..n—1 has been processed
5.5
5..6
5.7

Loop pattern to process a range m..n
(if m = n+1, the range is empty)

int h=m; // invariant: m..h—1

// invariant: m..h-1 /I has been processed

/I has been processed for (int h= m; h <= n; h=h+1) {
i 1=

while (h !=n+1) { Process h;
Process h;)
h=h+1; // { m..n has been processed }

}

// { m..n has been processed }

Decimal ~ Octal
001 0C

1 2% in binary is:

002 002

003 003 1 followed by n zeros.

004 004

005 005 2#%15 is 32768 (in decimal).

006 006))

007 007 n is called the (base 2) logarithm

008 010 of 2%#n,

009 011

010 012 The log of 32768 = 2**15 is 15.

011 013

012 014

013 015 To translate an octal

014 016 number into a binary

8%2 8% 10000 = 2 number, just translate each

032 026 100000 of digits:

256 400 100000000 = octal 745
is

binary 111100101

3

Logarithmic algorithm to
calculate b**c, for ¢ >= 0

/% = b*¥c, givenc = 0 */

Rest on identities:
b*#0 = 1
b¥¥*c= b * b¥¥*(c-1)

public static int exp(int b, int c) { |for even c, b**c = (b*b)**(c/2)

if (c == 0) return 1;

if (c%2 = 0) return exp(b*b, c/2);

return b * exp(b, c-1);

¥

Algorithm processes binary
representation of ¢

Suppose ¢ is 14 (1110 in binary)
1. Test if ¢ is even: test if last bit is 0

2. To compute ¢/2 in binary, just
delete the last bit.

Algorithm processes each bit of ¢
at most twice.

So if ¢ is 2%*15 = 32768, algorithm

has at most 2*15 = 30 recursive
calls!

Algorithm is logarithmic in c, since
time is proportional to log ¢

Iterative version of logarithmic algorithm to
calculate b**c,
for ¢ >=0 (i.e. b multiplied by itself ¢ times)
/** set z to b¥*c, given ¢ = 0 */
int x=Db; int y=c; int z=1;
// invariant: z * x**y =b**c and0<y=<c

while (y !=0) {
if (y % 2 ==0)

Rest on identities:

N b*0 = |
G=x*6y=y2} e
else {z=z*x;y=y-1;}
) for even ¢, b**c = (b*b)**(c/2)

I {z=b¥*c}

€343 =308

‘ Algorithm is logarithmic in c, since time is proportional to log ¢

Iterative version of logarithmic algorithm to

calculate b**c,

for ¢ >=0 (i.e. b multiplied by itself ¢ times)

/** set z to b**c, given ¢ = 0 */
int x=b; int y=c; int z= [;

// invariant: z * x**y =b**c and0<y=<c

while (y !=0) {
if (y % 2==0)
{x=x*x;y=y/2; }
else {z=z*x;y=y-1; }
}
/I {z=b**c}

Rest on identities:

b**0 =1

b*¥c = b * b*¥(c-1)

for even ¢, b**c = (b*b)**(c/2)
33 % 3%3 *3H3 = 3%

‘ Algorithm is logarithmic in c, since time is proportional to log ¢

Calculate quotient and remainder when dividing x by y

x/y=q+rly 21/4=4 + 3/4

Property: x=q*y +r and O<r<y

/** Set q to and r to remainder.
Note: x >=0and y >0 */

int q=0; int r=x;
//invariant: x=q*y+r andO<r
while (r>=y) {

=r-y;

g=q+1;
¥
/{x=q*y+r and O=<r<y}

10

