
1

1

CS100J 21 February 2005 Casting About
1. Casting between classes
2. Apparent and real classes.
3. Operator instanceof

Procrastination
Leave nothing for to-morrow that can be done to-day. Lincoln

How does a project get a year behind schedule? One day at a time.
Fred Brooks

I don't wait for moods. You accomplish nothing if you do that. Your
mind must know it has got to get down to work. Pearl S. Buck

When I start a new project, I procrastinate immediately so that I have
more time to catch up. Gries

4. The class hierarchy
5. function equals

Study Secs 4.2 and 4.3 in text

Buy a poster with the procrastinator’s creed here:
http://www.art.com/asp/sp-asp/_/pd--10001845/Procrastinators_Creed.htm 2

About Prelim 1
After today, you have learned all the basics of classes, and done

extremely well. Be proud of yourselves. Today’s lecture, on
casting, is not on prelim 1.

The prelim requires that you:
1. Know terminology (that means knowing what things mean). The

handout about the prelim summarizes the terms and their meanings.

2. Draw folders (instances, objects) of a class.
3. Be able to execute program segments yourself, drawing objects as

necessary.

4. Write a class or subclass definition, including its constructors.
5. Be able to write a testing method in a Junit class (as on A2).

6. Be able to write simple functions that manipulate Strings. Good
way to study is to practice: do many exercises on pp. 100-103.
Write them, put them into DrJava, and test them!!!

3

Class Animal

public class Animal {
 private String name; // name of the animal
 private int age; // age of animal

 /** Constructor: an Animal with name n, age a */
 public Animal(String n, int a) { name= n; age= a; }

 /** = "this Animal is older than h" */
 public boolean isOlder(Animal h)
 { return this.age > h.age; }

 /** = the noise that the animal makes --
 "" in class Animal */
 public String getNoise () { return ""; }

 /** = the name of this Animal */
 public String getName() { return name; }

 /** = a description of this Animal */
 public String toString() { return "Animal " + name + ", age " + age; }
}

We put each method on
one line to save space on
the slide. Don’t do it in
your program.

a0
Animal

name

age
Animal(String, int)
isOlder(Animal)
getNoise()
getName()
toString()

4

Class Cat

/** An instance is a cat */
public class Cat extends Animal {
 /** Constructor: a Cat with name n and age a */
 public Cat(String n, int a) { super(n, a); }

 /** = the noise this cat makes */
 public String getNoise() { return "meow"; }

 /** = a description of this Cat */
 public String toString() {
 return super.toString() + ", noise " + getNoise();
 }

 /** = weight of Cat */
 public int getWeight() { return 20; }
} Cat(String, int)

getNoise()
toString()
getWeight()

a0
Animal

Cat

name

age
Animal(String, int)
isOlder(Animal)
getNoise()
getName()
toString()

5

Casting up the class hierarchy a0
Animal

CatCat(String, int)
getNoise()
toString()
getWeight()

age
Animal(String, int)
isOlder(Animal)

5

a1
Animal

DogDog(String, int)
getNoise()
toString()

age
Animal(String, int)
isOlder(Animal)

6

Object

Animal

Dog Cat

You know about casts like

 (int) (5.0 / 7.5)

 (double) 6

 double d= 5; // automatic cast

We now discuss casts up and down the
class hierarchy.

 Animal h= new Cat(“N”, 5);

 Cat c= (Cat) h;

6

Implicit casting up the class hierarchy

public class Animal {

 /** = "this is older than h" */
 public boolean isOlder(Animal h)
 { return this.age > h.age; }
}

c= new Cat(“C”, 5);
d= new Dog(“D”, 6);
c.isOlder(d) ?????

a0
Animal

CatCat(String, int)
getNoise()
toString()
getWeight()

age
Animal(String, int)
isOlder(Animal)

5

a1
Animal

DogDog(String, int)
getNoise()
toString()

age
Animal(String, int)
isOlder(Animal)

6
isOlder: 1 a0

h
Animal

Object

Animal

Dog Cat

a1 is cast from Dog to Animal, automatically

Casts up the
hierarachy

done
automatically

Upward automatic
casts make sense. Here,
any Dog is an Animal

a1

2

7

Implicit casting up the class hierarchy
public class Animal {
 /** = "this is older than h" */
 public boolean isOlder(Animal h)
 { return this.age > h.age; }
}

c= new Cat(“C”, 5);

d= new Dog(“D”, 6);

c.isOlder(d) --what is its value?

a1
Animal

DogDog(String, int)
getNoise()
toString()

age
Animal(String, int)
isOlder(Animal)

6

isOlder: 1 a0

h a1
Animal

Apparent type of h. Syntactic
property. The type with which h is
defined.

Real type of h: Doc (type of object
a1).

Semantic property. The class-type
of the folder whose name is
currently in h.

Two new
terms to
learn!

Apparently, h is an Animal,
but really, it’s a Dog.

8

What components can h reference?
public class Animal {
 /** = "this is older than h" */
 public boolean isOlder(Animal h)
 { return this.age > h.age; }
}

c= new Cat(“C”, 5);
d= new Dog(“D”, 6);
d.isOlder(c)

isOlder: 1 a1

h a0
Animal

Apparent type of h: Animal
Real type of h: Cat

What can isOlder reference in object h?

Cat(String, int)
getNoise()
toString() getWeight()

a0
Animal

Cat

name

age
Animal(String, int)
isOlder(Animal)
getNoise() getName()
toString()

Determined by the apparent type:
Only components in partition Animal (and
above)!!!

h.getWeight() is illegal. Syntax error.

9

What method is called by h.toString() ?
public class Animal {
 public boolean isOlder(Animal h) {
 String s= h.toString();
 return this.age > h.age;
} }

c= new Cat(“C”, 5);
d= new Dog(“D”, 6);
d.isOlder(c)

isOlder: 1 a1

h a0

Apparent type of h: Animal
Real type of h: Cat What method is called by h.toString() ?

Cat(String, int)
getNoise()
toString() getWeight()

a0
Animal

Cat

name

age
Animal(String, int)
isOlder(Animal)
getNoise() getName()
toString()

s
Determined by the real type:
The overriding toString() in Cat.

10

Explicit cast down the hierarchy
public class Animal {
 // If Animal is a cat, return its weight;
 otherwise, return 0.
 public int checkWeight(Animal h) {
 if (!)
 return 0;
 // h is a Cat

 return c.getWeight();
}

Apparent type of h: Animal
Real type of h: Cat

Cat(String, int)
getNoise()
toString() getWeight()

a0
Animal

Cat

name

age
Animal(String, int)
isOlder(Animal)
getNoise() getName()
toString()

isOlder: 1 a1

h a0 c a0
Animal Cat

// downward castint c= (Cat) h ;

Object

Animal

Dog Cat

Here, (Dog) h
would lead to a runtime
error.

Don’t try to cast an
object to something that
it is not!

(h instanceof Cat)

11

The correct way to write method equals
public class Animal {
 /** = “h is a non-null Animal with the same
 values in its fields as this Animal */
 public boolean equals (Object h) {
 if (h == null) return false;
 if (!(h instanceof Animal)) return false;
 Animal ob= (Animal) h;
 return this.name.equals(ob.name) &&
 this.age == ob.name;
}

Object

Animal

Dog Cat

Animal

a0

Cat(String, int)
getNoise()
toString() getWeight()

Cat

name

age
Animal(String, int)
isOlder(Animal)
getNoise() getName()
toString()

Object

equals(Object)

