CS100J 21 February 2005

Casting between clz

1.
2. Apparent and real classes.
3. Operator instanceof Study

Procrastination

Casting About
4. The class hierarchy
5. function equals

Secs 4.2 and 4.3 in text

Leave nothing for to-morrow that can be done to-day. Lincoln

How does a project get a year behind schedule? One day at a time.

Fred Brooks

| don't wait for moods. You accomplish nothing if you do that. Your

mind must know it has got to get down to work.

Pearl S. Buck

When | start a new project, | procrastinate immediately so that | have

more time to catch up. Gries

Buy a poster with the procrastinator’s creed here:

http://www.art.com/asp/sp-asp/_/pd--10001845/Procrastinators_Creed.htm

About Prelim 1

After today, you have learned all the basics of classes, and done
extremely well. Be proud of yourselves. Today’s lecture, on

casting, is not on prelim 1.

The prelim requires that you:

1. Know terminology (that means knowing what things mean). The
handout about the prelim summarizes the terms and their meanings.

2. Draw folders (instances, objects) of a class.

3. Be able to execute program segments yourself, drawing objects as

necessary.

4. Write a class or subclass definition, including its constructors.

5. Be able to write a testing method in a Junit class (as on A2).

6. Be able to write simple functions that manipulate Strings. Good
way to study is to practice: do many exercises on pp. 100-103.
Write them, put them into DrJava, and test them!!!

Class Animal

public class Animal {
private String name; // name of the animal
private int age; // age of animal
/*#* Constructor: an Animal with name n, age a */
public Animal(String n, int a) { name= n; age=a; }
/%% = "this Animal is older than h" */
public boolean isOlder(Animal h)
{ return this.age > h.age; }
/** = the noise that the animal makes --
""in class Animal */
public String getNoise () { return ""; }
/** = the name of this Animal */
public String getName() { return name; }

/*#% = a description of this Animal */

We put each method on
one line to save space on
the slide. Don’t do it in
your program.

]
name

age []
Animal(String, int)
isOlder(Animal)
getNoise()
getName()
toString()

Animal

public String toString() { return "Animal " + name + ", age " + age; }

Class Cat

/*% An instance is a cat */
public class Cat extends Animal {
/*#* Constructor: a Cat with name n and age a */
public Cat(String n, int a) { super(n, a); }
/** = the noise this cat makes */
public String getNoise() { return "meow";
/** = a description of this Cat */
public String toString() {
return super.toString() + ", noise " + getNoise();
¥
/*#* = weight of Cat */
public int getWeight() { return 20; }

w0]

name l:l Animal
age []

Animal(String, int)
isOlder(Animal)
getNoise()
getName()
toString()

Cat

Cat(String, int)
getNoise()
toString()
getWeight()

Casting up the class hierarchy

You know about casts like Object
(int) (5.0 /7.5)
Animal
(double) 6
double d=5; // automatic cast / \
Dog Cat

We now discuss casts up and down the
class hierarchy.

Animal h= new Cat(“N”, 5);
Cat c=(Cat) h;

]
age II' Animal

Animal(String, int)
isOlder(Animal)

Cat(String, int) | Cat
getNoise()

toString()
getWeight()

o]
age lzl Animal

Animal(String, int)
isOlder(Animal)

Dog(String, int)| Pog
getNoise()
toString()

Implicit casting up the class hierarchy

public class Animal { Object
/%% = "this is older than h" */
public boolean isOlder(Animal h) Animal

{ return this.age > h.age; }

) /N

Dog Cat
c=new Cat(“C”, 5);
d=new Dog(“D”, 6); Casts up the
; hierarachy
c.isOlder(d) ?7?7? done

automatically
a0
Upward automatic
casts make sense. Here,
any Dog is an Animal

isOlder: 1

Animal

al is cast from Dog to Animal, automatically

£l
age II' Animal

Animal(String, int)
isOlder(Animal)

Cat(String, int) | Cat
getNoise()

toString()
getWeight()

o]
age lzl Animal

Animal(String, int)
isOlder(Animal)

Dog(String, int)| Pog
getNoise()

toString()

Implicit casting up the class hierarchy
public class Animal {
/#% = "this is older than h" */
public boolean isOlder(Animal h)
{ return this.age > h.age; } Two new
) terms to
learn!

c=new Cat(“C”, 5);
d=new Dog(“D”, 6);

c.isOlder(d) --what is its value?

isOlder: 1

\i al).

Animal
]

Apparent type of h. Syntactic
property. The type with which h is
defined.

o]
age E Animal

Animal(String, int)
isOlder(Animal)

Dog(String, int) Dog
getNoise()
toString()

Real type of h: Doc (type of object

Semantic property. The class-type
of the folder whose name is
currently in h.

Apparently, h is an Animal,
but really, it’s a Dog.

‘What components can h reference?

public class Animal {
/*% = "this is older than h" */
public boolean isOlder(Animal h)
{ return this.age > h.age; }

c=new Cat(“C”, 5);
d=new Dog(“D”, 6);
d.isOlder(c)

isOlder: 1 \L

above)!!!
Apparent type of h: Animal
Real type of h: Cat

o]
name [|| Animal
]

age

Animal(String, int)
isOlder(Animal)
getNoise() getName()
toString()

Cat(String, int) Cat

getNoise()
toString() getWeight()

‘What can isOlder reference in object h?

Determined by the apparent type:
Animal Only components in partition Animal (and

h.getWeight() is illegal. Syntax error.

What method is called by h.toString() ?

public class Animal {
public boolean isOlder(Animal h) {
String s= h.toString();
return this.age > h.age;

i

c=new Cat(“C”, 5);
d=new Dog(“D”, 6);
d.isOlder(c)

isOlder: 1 \L
h s[]

Apparent type of h: Animal

Real type of h: Cat What method is

o]
name [|| Animal
]

age

Animal(String, int)
isOlder(Animal)
getNoise() getName()
toString()

Cat(String, int) Cat

getNoise()
toStringQ) getWeight()

Determined by the real type:
The overriding toString() in Cat.

called by h.toString() ?

Explicit cast down the hierarchy

public class Animal {
//If Animal is a cat, return its weight;
otherwise, return 0.

public int checkWeight(Animal h) {

if (! (h instanceof Cat))
return 0;

/I'his a Cat
int c= (Cat) h ; // downward cast
return c.getWeight();

}
isOlder: 1 al Object
c
Animal

Apparent type of h: Animal / \
Real type of h: Cat Dog Cat

o]
name [|| Animal
]

age

Animal(String, int)
isOlder(Animal)
getNoise() getName()
toString()

Cat(String, int) Cat

getNoise()
toString() getWeight()

Here, (Dog)h
would lead to a runtime
error.
Don’t try to cast an
object to something that
it is not!

10

The correct way to write method equals

public class Animal {
/** =*“h is a non-null Animal with the same
values in its fields as this Animal */
public boolean equals (Object h) {
if (h == null) return false;
if (!(h instanceof Animal)) return false;
Animal ob= (Animal) h;
return this.name.equals(ob.name) &&
this.age == ob.name;

Object

Animal

/N

Object

equals(Object)

name l:l Animal

age []
Animal(String, int)
isOlder(Animal)
getNoise() getName()
toStrin,

Cat
Cat(String, int)
getNoise()

Dog Cat

toString() getWeight()

