CS100J Classes, stepwise refinement 16 February 2005

Miscellaneous points about classes. CMS allows you to

A bit about stepwise refinement. S
several times.

Prelim 7:30-9:00 Thursday, 23 Feb. We grade only the last
) . one submitted (but
Review session: 1:00-3:00, Sunday, 19 access to all of them).

Feb, in Philips 101

Rsrecah on spleilng

Aoccdrnig to a rscheearch at Cmabirgde Uinervtisy, it deosn't
mttaer in waht oredr the Itteers in a wrod are, the olny
iprmoetnt tihng is that the frsit and Isat Itteer be at the rghit
pclae. The rset can be a total mses and you can sitll raed it
wouthit porbelm.Tihs is bcuseae the huamn mnid deos not raed

ervey lteter by istlef, but the wrod as a wlohe. ,

Help: Get it now if you need it!!
« One-on-one help from TAs. For info, get on the course
website and click "Staff-info".
« Call Cindy Pakkala 255-8240 for an appointment with Gries.

« See a consultant in the eng. library 2:30 to 11:00 (to 6:00 on
Fri-Sat). They aren't very busy now.

« Peer tutoring (free). On http://www.engineering.cornell.edu,
click on "student services". On the page that comes up, click
on "Learning Initiatives (L.I.F.E.) in the left column, upper part.
Then, click on "peer tutoring" in the left column.

» Take an AEW courses. Ask in Olin 167.

Notes on assignment A2
3. Testing for null
/*% = "fm is this family member's brother". Precondition: fm not null. */
public boolean isBrother(Rhino r) {

// No need to test for null. It’s the caller’s duty not to have r null.

}

/*#* ="rl and r2 are not null and r1 and r2 are siblings */

public static B§olean areSiblings(Rhino r1, Rhino r2) {
/I The result ddpends on r1, r2 not being null, and the
// return expression should somehow include that test.

return ..
, ¥

In RhinoTester, when testing areSiblings, need to test
calls like

areSiblings(m1, null)

areSiblings(null, m2) 3

Content of this lecture

This lecture contains some final miscellaneous points to round
out your knowledge of classes and subclasses. There are a few
more things to learn after that, but we”ll handle them much later.

* Inheriting fields and methods and Overriding methods.
Sec. 4.1 and 4.1.1: pp. 142-145

* Function toString. Sec. 3.1.4, pp. 112-113.

* Purpose of super and this. Sec. 4.1.1, pp. 144-145.

* More than one constructor in a class; another use of this.
Sec. 3.1.3, pp. 110-112.

* Method equals in class Object. Sec. 4.3 and 4.3.1, pp. 154-155.
(We do not cover the method at the end of Sec. 4.3.1.)

« Constructors in a subclass —calling a constructor of the
super-class. Sec. 4.1.3, pp. 147-148.

public class Employee {/** Instance: a person's name, year hired, and salary */
private String name; / Employee's name
private int start; /I Year hired
private double salary= 50000; // Salary
/## Constructor: a person with name n, year hired d, salary s */
public Employee(String n, int d) { name= n; start= d; salary=s;}
/% = name of this Employee */

public String getName() { return name; } This class is on
/** Set the name of this Employee to n */ page 105 of the
public void setName(String n) { name=n; } text.

/% = year this Employee was hired */
public int getStart() { return start; }
/%% Set the year this Employee was hired to y */
public void setStart(int y) { start='y; }
/% = Employee's total compensation (here, the salary) */
public double getCompensation() { return salary; }
/#% Change this Employee’s salary to d */
public void changeSalary(double d) { salary=d; }
/## = String representation of this Employee */
public String toString()
{ return getName() + ", year " + getStart() + ", salary " + salary; } }

Employee c= new Employee(“Gries”, 1969, 50000); Sec. 4.1,
c.toString() page 142

0
Which method toString()

is called? equals(Object) toString()
Employee

Overriding rule:

To find out which is used,
start at the bottom of the AT
class and search upward
until a matching one is
found.

salary

getName() setName(String n)
toString()

Also called the bottom-up rule.

Terminology. Employee inherits methods and fields from
Object. Employee overrides function toString.

Purpose of function toString: to give a string repre- Sec. 3.14,
sentation of the folder (object) in which it appears. page 112

In Object, all toString can do is to give the name on the folder.

In Employee, toString can tell you the values of the fields

/** = String representation of this Employee */
public String toString() {
return getName() + ", year ” + getStart() + ", salary ” + salary;

3

Nice Java rule. If you use the name c of a folder in a place where a
String is needed, Java uses the value of c.toString().

A second constructor in Employee Sec. 3.1.3,

Provide flexibility, ease of use, to user page 110

/** Constructor: a person with name n, year hired d, salary s */
public Employee(String n, int d, double s) {
name= n; start= d; salary=s; First constructor

¥

/** Constructor: a person with name n, year hired d, salary 50,000 */
public Employee(String n, int d) {

. .) Second constructor;
, names= n; start= d; salary= 50000; salary is always 50,000

/** Constructor: a person with name n, year hired d, salary 50,000 */
public Employee(String n, int d) {

Another version of second
this(n, d, 50000);

constructor; calls first constructor

Here, this refers to the other constructor

Purpose of super and this Sec. 4.1, pages
Use this to refer to the object in which it appears. 144-145
Use super to refer to components in the super-class partition of the
object (and above).

/** = String representation of this Employee */
public String toString() {
return this.getName() + ", year ” + getStart() + ", salary ” + salary;

}

ok, but unnecessary

/*#% = toString value from superclass */
public String toStringUp() {
return super.toString();

b

necessary

Method equals in class Object. Sec. 4.3.1,
a0 page 154

/** = “the name of this object is the same X -
as the name of obj */ @yealk{(Qlijesi)

public boolean equals(Object obj) Employee

start | 1969

{ return this == obj; }

equals(Object)
Write equals in class Employee
/** =*e is an Employee, with the same fields as this Employee */
public boolean equals(Employee) { Function does not override
return e != null

&& this.name.equals(e.name)

&& this. spert == e.start

&& thigsalary =

equals in Object because the
parameter has a different type.
It’s a new, different function.
= e.salary; We’ll fix redo this function
later in the course.

Don’t use == with Strings 10

/** An executive: an employee with a bonus. */ Subclass Executive
public class Executive extends Employee {
private double bonus; // yearly bonus
/** Constructor: name n, year hired d, salary 50,000, bonus b */
public Executive(String n, int d, double b) {
super(n, d);
bonus= b;
}
/*% = this executive’s bonus */
public double getBonus() { return bonus; }
/** = this executive’s yearly compensation */
public double getCompensation!}
{ return super.gctCompensation() + bonus; }

super(n,d) calls a constructor in the super-
class to initialize the superclass fields

super. means that
the function in the

superclass will be
/** = a representation of this executive */ called.

public String toString()
{ return super.toString() + ", bonus " + bonus; }

public class Executive extends Employee { Calling a superclass
private double bonus; constructor from the

. . subclass constructor
/** Constructor: name n, year hired

d, salary 50,000, bonus b */ a0 Sec. 4.1.3, page 147

public Executive(String n, int d, double b) {) Object
super(n, d); toString() ...
Employee

bonus= b;
}

} The first (and only the first) statement in a
constructor can be a call to a constructor
of the superclass. If you don’t put one in,
then this one is automatically used:

super(); bonus 10,000 \M‘

Executive(String, int, double)
getBonus() getCompensation()
‘ toString()

Employee(String, int)
toString() getCompensation()

Principle: Fill in superclass fields first. »

