
1

1

CS100J Classes, stepwise refinement 16 February 2005

Rsrecah on spleilng
Aoccdrnig to a rscheearch at Cmabirgde Uinervtisy, it deosn't
mttaer in waht oredr the ltteers in a wrod are, the olny
iprmoetnt tihng is that the frsit and lsat ltteer be at the rghit
pclae. The rset can be a total mses and you can sitll raed it
wouthit porbelm.Tihs is bcuseae the huamn mnid deos not raed
ervey lteter by istlef, but the wrod as a wlohe.

Miscellaneous points about classes.
A bit about stepwise refinement.

CMS allows you to
submit an assignment

several times.

We grade only the last
one submitted (but

access to all of them).

Prelim 7:30-9:00 Thursday, 23 Feb.

Review session: 1:00-3:00, Sunday, 19
Feb, in Philips 101

2

Help: Get it now if you need it!!

• One-on-one help from TAs. For info, get on the course
website and click "Staff-info".

• Call Cindy Pakkala 255-8240 for an appointment with Gries.

• See a consultant in the eng. library 2:30 to 11:00 (to 6:00 on
Fri-Sat). They aren't very busy now.

• Peer tutoring (free). On http://www.engineering.cornell.edu,
click on "student services". On the page that comes up, click
on "Learning Initiatives (L.I.F.E.) in the left column, upper part.
Then, click on "peer tutoring" in the left column.

• Take an AEW courses. Ask in Olin 167.

3

Notes on assignment A2
3. Testing for null

 /** = "fm is this family member's brother". Precondition: fm not null. */
 public boolean isBrother(Rhino r) {
 // No need to test for null. It’s the caller’s duty not to have r null.
 }

 /** = ”r1 and r2 are not null and r1 and r2 are siblings */
 public static boolean areSiblings(Rhino r1, Rhino r2) {
 // The result depends on r1, r2 not being null, and the
 // return expression should somehow include that test.

return …
 }

In RhinoTester, when testing areSiblings, need to test
calls like

areSiblings(m1, null)

areSiblings(null, m2) 4

Content of this lecture

This lecture contains some final miscellaneous points to round
out your knowledge of classes and subclasses. There are a few
more things to learn after that, but we’’ll handle them much later.

• Inheriting fields and methods and Overriding methods.
 Sec. 4.1 and 4.1.1: pp. 142–145
• Function toString. Sec. 3.1.4, pp. 112–113.
• Purpose of super and this. Sec. 4.1.1, pp. 144–145.
• More than one constructor in a class; another use of this.
 Sec. 3.1.3, pp. 110–112.
• Method equals in class Object. Sec. 4.3 and 4.3.1, pp. 154–155.
 (We do not cover the method at the end of Sec. 4.3.1.)
• Constructors in a subclass —calling a constructor of the
 super-class. Sec. 4.1.3, pp. 147–148.

5

public class Employee {/** Instance: a person's name, year hired, and salary */
 private String name; // Employee's name
 private int start; // Year hired
 private double salary= 50000; // Salary
 /** Constructor: a person with name n, year hired d, salary s */
 public Employee(String n, int d) { name= n; start= d; salary= s;}
 /** = name of this Employee */
 public String getName() { return name; }
 /** Set the name of this Employee to n */
 public void setName(String n) { name= n; }
 /** = year this Employee was hired */
 public int getStart() { return start; }
 /** Set the year this Employee was hired to y */
 public void setStart(int y) { start= y; }
 /** = Employee's total compensation (here, the salary) */
 public double getCompensation() { return salary; }
 /** Change this Employee’s salary to d */
 public void changeSalary(double d) { salary= d; }
 /** = String representation of this Employee */
 public String toString()
 { return getName() + ", year " + getStart() + ", salary " + salary; } }

This class is on
page 105 of the
text.

6

Employee c= new Employee(“Gries”, 1969, 50000);
c.toString()

a0

Object

name “Gries” start 1969

salary 50,000.00

getName() setName(String n) …
toString()

equals(Object) toString()

Employee

c a0

Which method toString()
is called?

Overriding rule:
To find out which is used,
start at the bottom of the
class and search upward
until a matching one is
found.

Also called the bottom-up rule.

Terminology. Employee inherits methods and fields from
Object. Employee overrides function toString.

Sec. 4.1,
page 142

2

7

In Object, all toString can do is to give the name on the folder.

In Employee, toString can tell you the values of the fields

/** = String representation of this Employee */
public String toString() {
 return getName() + ", year ” + getStart() + ", salary ” + salary;
}

Nice Java rule. If you use the name c of a folder in a place where a
String is needed, Java uses the value of c.toString().

Sec. 3.1.4,
page 112

Purpose of function toString: to give a string repre-
sentation of the folder (object) in which it appears.

8

Purpose of super and this
Use this to refer to the object in which it appears.
Use super to refer to components in the super-class partition of the
object (and above).

/** = String representation of this Employee */
public String toString() {
 return this.getName() + ", year ” + getStart() + ", salary ” + salary;
}

ok, but unnecessary

/** = toString value from superclass */
public String toStringUp() {
 return super.toString();
}

necessary

Sec. 4.1, pages
144-145

9

A second constructor in Employee
Provide flexibility, ease of use, to user

/** Constructor: a person with name n, year hired d, salary s */
public Employee(String n, int d, double s) {
 name= n; start= d; salary= s;
 }

/** Constructor: a person with name n, year hired d, salary 50,000 */
 public Employee(String n, int d) {
 name= n; start= d; salary= 50000;
}

First constructor

Second constructor;
salary is always 50,000

/** Constructor: a person with name n, year hired d, salary 50,000 */
 public Employee(String n, int d) {
 this(n, d, 50000);
}

 Another version of second
constructor; calls first constructor

Here, this refers to the other constructor

Sec. 3.1.3,
page 110

10

Function does not override
equals in Object because the
parameter has a different type.
It’s a new, different function.
We’ll fix redo this function
later in the course.

Method equals in class Object.

/** = “the name of this object is the same
 as the name of obj */
public boolean equals(Object obj)

{ return this == obj; }

a0
Object

name “Gries” start 1969

salary 50,000

equals(Object)

equals(Object)

Employee

/** = “e is an Employee, with the same fields as this Employee */
public boolean equals(Employee e) {
 return e != null
 && this.name.equals(e.name)
 && this. start == e.start
 && this. salary == e.salary;
 }

Write equals in class Employee

Sec. 4.3.1,
page 154

Don’t use == with Strings

11

Subclass Executive/** An executive: an employee with a bonus. */
public class Executive extends Employee {
 private double bonus; // yearly bonus
 /** Constructor: name n, year hired d, salary 50,000, bonus b */
 public Executive(String n, int d, double b) {
 super(n, d);
 bonus= b;
 }
 /** = this executive’s bonus */
 public double getBonus() { return bonus; }
 /** = this executive’s yearly compensation */
 public double getCompensation()
 { return super.getCompensation() + bonus; }
 /** = a representation of this executive */
 public String toString()
 { return super.toString() + ", bonus " + bonus; }
}

super(n,d) calls a constructor in the super-
class to initialize the superclass fields

super. means that
the function in the
superclass will be

called.

12

a0
Object

name “Gries” start 1969

salary

10,000

Employee(String, int)
toString() getCompensation()

toString() …

Employee

Executivebonus

Executive(String, int, double)
getBonus() getCompensation()
toString()

50,000

Calling a superclass
constructor from the
subclass constructor

public class Executive extends Employee {
 private double bonus;
 /** Constructor: name n, year hired
 d, salary 50,000, bonus b */
 public Executive(String n, int d, double b) {
 super(n, d);
 bonus= b;
 }
} The first (and only the first) statement in a

constructor can be a call to a constructor
of the superclass. If you don’t put one in,
then this one is automatically used:

super();

Principle: Fill in superclass fields first.

Sec. 4.1.3, page 147

