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CS100J   Classes, stepwise refinement   16 February 2005

Rsrecah on spleilng
Aoccdrnig to a rscheearch at Cmabirgde Uinervtisy, it deosn't
mttaer in waht oredr the ltteers in a wrod are, the olny
iprmoetnt tihng is that the frsit and lsat ltteer be at the rghit
pclae. The rset can be a total mses and you can sitll raed it
wouthit porbelm.Tihs is bcuseae the huamn mnid deos not raed
ervey lteter by istlef, but the wrod as a wlohe.

Miscellaneous points about classes.
A bit about stepwise refinement.

CMS allows you to
submit an assignment

several times.

We grade only the last
one submitted (but

access to all of them).

Prelim 7:30-9:00 Thursday, 23 Feb.

Review session: 1:00-3:00, Sunday, 19
Feb, in Philips 101
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Help: Get it now if you need it!!

• One-on-one help from TAs. For info, get on the course
website and click "Staff-info".

• Call Cindy Pakkala 255-8240 for an appointment with Gries.

• See a consultant in the eng. library 2:30 to 11:00 (to 6:00 on
Fri-Sat). They aren't very busy now.

• Peer tutoring (free). On http://www.engineering.cornell.edu,
click on "student services". On the page that comes up, click
on "Learning Initiatives (L.I.F.E.) in the left column, upper part.
Then, click on "peer tutoring" in the left column.

• Take an AEW courses. Ask in Olin 167.
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Notes on assignment A2
3. Testing for null

    /** = "fm is this family member's brother". Precondition: fm not null. */
    public boolean isBrother(Rhino r) {
        // No need to test for null. It’s the caller’s duty not to have r null.
    }

    /** = ”r1 and r2 are not null and r1 and r2 are siblings */
    public static boolean areSiblings(Rhino r1, Rhino r2) {
        // The result depends on r1, r2 not being null, and the
        // return expression should somehow include that test.

return …
    }

In RhinoTester, when testing areSiblings, need to test
calls like

areSiblings(m1, null)

areSiblings(null, m2) 4

Content of this lecture

This lecture contains some final miscellaneous points to round
out your knowledge of classes and subclasses. There are a few
more things to learn after that, but we’’ll handle them much later.

• Inheriting fields and methods and Overriding methods.
  Sec. 4.1 and 4.1.1: pp. 142–145
• Function toString. Sec. 3.1.4, pp. 112–113.
• Purpose of super and this. Sec. 4.1.1, pp. 144–145.
• More than one constructor in a class; another use of this.
   Sec. 3.1.3, pp. 110–112.
• Method equals in class Object. Sec. 4.3 and 4.3.1, pp. 154–155.
  (We do not cover the method at the end of Sec. 4.3.1.)
• Constructors in a subclass —calling a constructor of the
  super-class. Sec. 4.1.3, pp. 147–148.
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public class Employee {/** Instance: a person's name, year hired, and salary */
   private String name;      // Employee's name
   private int start;        // Year hired
   private double salary= 50000;    // Salary
   /** Constructor: a person with name n, year hired d, salary s */
   public Employee(String n, int d) { name= n; start= d; salary= s;}
   /** = name of this Employee */
   public String getName() { return name; }
   /** Set the name of this Employee to n */
   public void setName(String n)  { name= n; }
   /** = year this Employee was hired */
   public int getStart() { return start; }
   /** Set the year this Employee was hired to y */
   public void setStart(int y) { start= y; }
   /** = Employee's total compensation (here, the salary) */
   public double getCompensation() { return salary; }
   /** Change this Employee’s salary to d */
   public void changeSalary(double d)  { salary= d; }
   /** = String representation of this Employee */
   public String toString()
      { return getName() + ", year " + getStart() + ", salary " + salary; }        }

This class is on
page 105 of the
text.
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Employee c= new Employee(“Gries”, 1969, 50000);
c.toString()

a0

Object

name “Gries” start 1969

salary 50,000.00

getName()   setName(String n)   …
toString()

equals(Object)   toString() 

Employee

c a0

Which method toString()
is called?

Overriding rule:
To find out which is used,
start at the bottom of the
class and search upward
until a matching one is
found.

Also called the bottom-up rule.

Terminology. Employee inherits methods and fields from
Object. Employee overrides function toString.

Sec. 4.1,
page 142
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In Object, all toString can do is to give the name on the folder.

In Employee, toString can tell you the values of the fields

/** = String representation of this Employee */
public String toString() {
      return getName()  +  ", year ”  +  getStart()  +  ", salary ”  +  salary;
}

Nice Java rule. If you use the name c of a folder in a place where a
String is needed, Java uses the value of c.toString().

Sec. 3.1.4,
page 112

Purpose of function toString: to give a string repre-
sentation of the folder (object) in which it appears.
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Purpose of super and this
Use this to refer to the object in which it appears.
Use super to refer to components in the super-class partition of the
object (and above).

/** = String representation of this Employee */
public String toString() {
      return this.getName()  +  ", year ”  +  getStart()  +  ", salary ”  +  salary;
}

ok, but unnecessary

/** = toString value from superclass */
public String toStringUp() {
       return super.toString();
}

necessary

Sec. 4.1, pages
144-145
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A second constructor in Employee
Provide flexibility, ease of use, to user

/** Constructor: a person with name n, year hired d, salary s */
public Employee(String n, int d, double s) {
        name= n; start= d; salary= s;
 }

/** Constructor: a person with name n, year hired d, salary 50,000 */
    public Employee(String n, int d) {
         name= n; start= d; salary= 50000;
}

First constructor

Second constructor;
salary is always 50,000

/** Constructor: a person with name n, year hired d, salary 50,000 */
    public Employee(String n, int d) {
           this(n, d, 50000);
}

 Another version of second
constructor; calls first constructor

Here, this refers to the other constructor

Sec. 3.1.3,
page 110
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Function does not override
equals in Object because the
parameter has a different type.
It’s a new, different function.
We’ll fix redo this function
later in the course.

Method equals in class Object.

/** = “the name of this object is the same
           as the name of obj */
public boolean equals(Object obj)

{ return this == obj; }

a0
Object

name “Gries” start 1969

salary 50,000

equals(Object)

equals(Object)  

Employee

/** = “e is an Employee, with the same fields as this Employee */
public boolean equals(Employee e) {
        return e != null
            &&  this.name.equals(e.name)
            &&  this. start == e.start
            &&  this. salary == e.salary;
    }

Write equals in class Employee

Sec. 4.3.1,
page 154

Don’t use == with Strings
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Subclass  Executive/** An executive: an employee with a bonus. */
public class Executive extends Employee {
    private double bonus; // yearly bonus
    /** Constructor: name n, year hired d, salary 50,000, bonus b */
    public Executive(String n, int d, double b) {
        super(n, d);
        bonus= b;
    }
    /** = this executive’s bonus */
    public double getBonus()    { return bonus; }
    /** = this executive’s yearly compensation */
    public double getCompensation()
        { return super.getCompensation() + bonus; }
    /** = a representation of this executive */
    public String toString()
        { return super.toString() + ", bonus " + bonus; }
}

super(n,d) calls a constructor in the super-
class to initialize the superclass fields

super. means that
the function in the
superclass will be

called.
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a0
Object

name “Gries” start 1969

salary

10,000

Employee(String, int)
toString()      getCompensation()

toString()  …

Employee

Executivebonus

Executive(String, int, double) 
getBonus()   getCompensation()
toString()           

50,000

Calling a superclass
constructor from the
subclass constructor

public class Executive extends Employee {
  private double bonus;
  /** Constructor: name n, year hired
                 d, salary 50,000, bonus b */
  public Executive(String n, int d, double b) {
        super(n, d);
        bonus= b;
    }
} The first (and only the first) statement in a

constructor can be a call to a constructor
of the superclass. If you don’t put one in,
then this one is automatically used:

super();

Principle: Fill in superclass fields first.

Sec. 4.1.3, page 147


