CS100J 02 February 2006

Today’s topic: Customizing a class (continued)

Quiz 2 on Tuesday:

How do you draw a folder of a subclass?

How do you evaluate a new expression (see slide 10)?
What is the purpose of a constructor (see slide 9)?

Quote for the day:

There is no reason anyone would want a computer in their

home. --Ken Olson, president, chairman and founder of Digital

Equipment Corp. (DEC), 1977.

The company was a huge player in computer hardware and software in CS

academia in the 1970’s. The old PDP machines were well known. The VAX

had unix on it, and C, and Lisp. It was the main computer in most CS

departments of any stature. DEC was bought by COMPAQ in the late 1990’s.
1

CS100J, 02 February 2006

Reading for this lecture: Section 1.4, 1.5, and 1.7 (not 1.6).
Read all the “style notes”, too.

Summary of lectures: On course home page, click on
“Handouts” and then “Outline of lectures held so far”.

Today: Class Object, method toString()
Fields (variables in a folder),
and getter and setter methods for them.
Constructors.
Static components.

Class Object: The superest class of them all
Every class that does not extend another one automatically
extends class Object.
publicclassC { ... }
is equivalent to

public class C extends Object { ...}

See 1/2-page section 4.3.1 on page 154.
The reason for this will become clear later.

You need this information to do assignment Al.

Class Object: The superest class of them all

B Bill

Patient

OWEs | $250.00 toString()

this/is:eauy is — mame . Citon | st |

owes $250 0
Because it is always there, to avoid

clutter, we don’t generally draw the See 1 /2-page section 4.3.1 on
partition for superclass Object page 154

name

4

Method toString()
Convention: c.toString() returns Bill
a representation of folder c.
Put following method in Patient. equals(Object)
public String toString() { toString()
return name + “ ” + address +

s

+owes; name [B. Clinton| \M
In appropriate places, the owes | $250.00

expression ¢ automatically
does c.toString() toString()

Field: a variable that is in each folder of a class.

We generally make fields a0
private instead of public, so

that they cannot be referenced title |:|

from methods that are outside

the class. number |:|

public class Chapter {
private String title; // Title of the chapter
private int number; / Number of the chapter

private Chapter previous; // previous chapter (null if none)

¥

Getter and setter methods

/** An instance describes a chapter of 20
a book */

public class Chapter { .
private String title; // Title of the chapter title |:|
/% = the title of the chapter */ number |:|
public String getTitle() { q
return title; previous |:|

}
getTitle() setTitle(String t)

/%% Set the title of the chapter to t #/
public void setTitle(String t) {
title=t;

N Getter methods get or retrieve

values from a folder.

Setter methods set or change
fields of a folder

We need a way to initialize fields
when a folder is first created

new Chapter() a0

e [Chaper]
number |:|
new Chapter(“I am born”, 1, null) previous |:|

getTitle() setTitle(String t)

creates a folder but doesn’t allow us to
say what values should be in it.

We would like to be able to say:

to set the title to “I am born™, the
chapter number to 1, and the previous
chapter to null.

For this, we use a new kind of method, the constructor.

The purpose of a constructor is to initialize (some) fields
of a newly created folder
/** An instance describes a chapter of

a book */ 20
public class Chapter {
private String title; // Title of chapter)
private int number; // No. of chapter title |:|

private Chapter previous; // previous
// chapter (null if none) number |:|

) . o previous
/#* Constructor: an instance with title t,

chapter number i, and previous . g g
chapter p (null if none) */ getTitle() setTitle(String t)

public Chapter(String t, int i,

Chapter(String t,
Chapter p) { pter(&

int i, Chapter c)

title=t;
number= i;
previous= p;

} Do not put a type or void here
i 9

The name of a constructor is the name of the class.

New description of execution of a new-expression

new Chapter(“I am born”, 1, null)

a0

2. Put the folder in file-drawer Chapter. previous |:|

3. Execute the constructor call getTitle() setTitle(String t)

1. Create a new folder of class Chapter,
with fields initialized to default
values (0 for int, for example).

Chapter(“I am born”, 1, null) Chapter(String t,

int i, Chapter c)
4. Use the name of the new folder as
the value of the new-expression.

Memorize this new definition! Today! Now!
10

You can have more than one constructor

/** Constructor: an instance with title t,
chapter number i, and previous chapter
p (null if none) */
public Chapter(String t, int i, Chapter p) {
title=t;
number= i;
previous= p;

¥

/** Constructor: an instance with title t,
chapter number i, and previous chapter null */
public Chapter(String t, int i) {
title=t;
:::x?:;;;mu; Makes it easier, more flexible, for the
Y “user” who is using the class

A static field does not appear in each folder.
It appears in the file drawer, by itself, on a piece of paper.
There is only ONE copy of it.

Reference the static
public class Chapter { variable using
private int title; // Number of chapter

private static int numberOfChapters= 0;

}

Chapter.numberChaps

Use a static variable when you want to accumulate
information about all (or some) folders.

al

title

numberChaps

File drawer for class Chapter

2

