
1

1

CS100J 13 April 2005
Exceptions in Java (read chapter 10)

and Quicksort
Review session Sunday in Philips 101, 1PM-3PM.

I believe it is fundamentally wrong to teach a science like program-
ming by reinforcing the students' intuition when that intuition is inade-
quate and misguided. On the contrary, our task is to demonstrate that a
first intuition is often wrong and to teach the principles, tools, and
techniques that will help overcome and change that intuition! Rein-
forcing inadequate intuitions just compounds the problem. Gries, 1988

Do not miss class or lab on Tuesday. We will start on Matlab in
class, and the lab will introduce you to its use on the computer.

Nothing needs changing so much as the habits of others. Mark Twain

2

On developing programs or algorithms

The majority of the texts for introductory programming courses do not teach
you about programming. They simply show you programs. They don’t show
you thought effective thought processes for the development of programs;
They show you programs and expect you to be able to go write your own.
Look at other texts to see this for yourself.

My goal is to show you
(1) how to understand programs and
(2) how to develop programs.

Let me make an analogy to make my point clear. Suppose you attend a
course in cabinet making. The instructor briefly shows you a saw, a plane, a
hammer, and a few other tools, letting you use each one for a few minutes.
He next shows you a beautifully-finished cabinet. Finally, he tells you to
design and build your own cabinet and bring him the finished product in a
few weeks. You would think he was crazy! Gries, D., “What Should We
Teach in an Introductory Programming Course”, Proc fourth SIGCSE
Technical Symp. on Computer Science Education, 1974, pp. 81-89.

3

On developing programs or algorithms

Important points:
1. Managing complexity! (don’t let it raise its ugly head)
2. Keep it simple.
3. Correctness should be the driving force!
4. Separate concerns —focus on one thing at a time
5. Use abstraction. E.g. sometimes focus on what rather than how.
6. Whatever you do must be tested thoroughly.

Concern for correctness as a guiding principle for program composition.
Edsger Dijkstra, 1970
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD02xx/EWD288.html

4

Quicksort:sort array of size n = k+1–h
// Sort b[h..k]
public static void QS(int b[], int h, int k) {

if (k+1 – h <= 1)
return; // array size ≤ 1

 int j= partition(b, h, k);
 // {b[h..j–1] ≤ b[j] ≤ b[j+1..k] }
 // Sort b[h..j–1]

QS(b, h, j–1);
// Sort b[j+1..k]

QS(b, j+1, k);
}

Problem. QS is very
inefficient for very small
arrays

Solution. Use Insertion
sort for arrays ≤10
(change base case to
arrays of size ≤ 10).

Problem. If pivot value b[h] is
not close to the median,
algorithm is very slow (takes
time proportional to n2).

Partial solution. Before
partitioning, swap b[h],
b[(h+k)/2], b[k] to put median
of the three in b[h].

Problem. In the worst case, the
space required is proportional to
n –same size as the array!

Solution. Use a loop to sort
some of the segments –see next
slide.

5

Quicksort:sort array of size n = k+1–h
// Sort b[h..k]
public static void QS(int b[], int h, int k) {

// inv: The initial array segment will be in order
 // when b[h..k] is in order
 while (k+1 – h >= 10) {

 Median_of_three(b, h, k);
 int j= partition(b, h, k);
 // {b[h..j–1] ≤ b[j] ≤ b[j+1..k] }
 if (j – h) < k – j) {
 QS(b, h, j–1); h= j+1;

 }
 else {
 QS(b, j+1, k); k= j–1;
 }

 }

insertionSort(b, h, k);
}

Sort sections of size ≤ 10 using
insertion sort.

Put median of three array elements
in b[h]. More change of pivot value
being close to the median.

Only the smaller of b[h..j–1] and
b[j+1..k] is sorted recursively. This
ensures a space requirement of order
log n. See lecture 15-4.4 on the
ProgramLive CD.

6

Exceptions and Errors

In Java, there is a class Throwable:

Throwable
a0

“/ by zero”detailMessage

getMessage()

When some kind of error
occurs, an exception is

“thrown”

An exception is an instance
of class Throwable

(or one of its subclasses)

2

7

Exceptions and Errors

So many different kind of exceptions that we have to organize them.

Throwable
a0

“/ by zero”detailMessage

getMessage()

Exception

RuntimeException

ArithmeticException

Throwable

Exception Error

RuntimeException

ArithmeticException

OutOfMemoryError

8

try {
 try-block
 (a sequence of statements)
}
catch (ArithmeticException e) {

 catch-block
 (a sequence of statements)
}
catch (IOException e) {

 catch-block
 (a sequence of statements)
}

The try-statement is executed as
follows.

1. Execute the try-block. If no
exceptions are “thrown”, that’s the end
of execution of the try-statement.

2. If an exception is thrown and it is of
the kind given in a catch-clause, then
execute that catch-block.

3. If an exception is thrown and it is not
“caught” by a catch block, then the
thrown exception is thrown out further
—as if the try-statement threw it.

4. If the thrown exception is not caught in the method in which it occurs, it
is thrown to the call —so that it appears as if the calling statement threw it.

9

/** Parse s as a signed decimal integer and return the integer. The characters
in the string must all be decimal digits, except that the first character may
be an ASCII minus sign '-' ('\u002D') to indicate a negative value.

 */
public static int parseInt(String s) throws NumberFormatException {

}

Any method may have a throw clause to
indicate what it throws. Sometimes, the
throws clause is required.

In the lecture, we will demo all this with simple examples.
The ProgramLive CD contains more examples and it is the
best source of material to understand all this.

