CS100J 13 April 2005
Exceptions in Java (read chapter 10)

and Quicksort
Review session Sunday in Philips 101, 1IPM-3PM.

Do not miss class or lab on Tuesday. We will start on Matlab in
class, and the lab will introduce you to its use on the computer.

On developing programs or algorithms

The majority of the texts for introductory programming courses do not teach
you about programming. They simply show you programs. They don’t show
you thought effective thought processes for the development of programs;
They show you programs and expect you to be able to go write your own.
Look at other texts to see this for yourself.

I believe it is fundamentally wrong to teach a science like program-
ming by reinforcing the students' intuition when that intuition is inade-
quate and misguided. On the contrary, our task is to demonstrate that a
first intuition is often wrong and to teach the principles, tools, and
techniques that will help overcome and change that intuition! Rein-
forcing inadequate intuitions just compounds the problem. Gries, 1988

My goal is to show you
(1) how to understand programs and
(2) how to develop programs.

Nothing needs changing so much as the habits of others. Mark Twain

1

Let me make an analogy to make my point clear. Suppose you attend a
course in cabinet making. The instructor briefly shows you a saw, a plane, a
hammer, and a few other tools, letting you use each one for a few minutes.
He next shows you a beautifully-finished cabinet. Finally, he tells you to
design and build your own cabinet and bring him the finished product in a
few weeks. You would think he was crazy! Gries, D., “What Should We
Teach in an Introductory Programming Course”, Proc fourth SIGCSE
Technical Symp. on Computer Science Education, 1974, pp. 81-89.

On developing programs or algorithms

Important points:

Managing complexity! (don’t let it raise its ugly head)
Keep it simple.

Correctness should be the driving force!

Separate concerns —focus on one thing at a time

Use abstraction. E.g. sometimes focus on what rather than how.
Whatever you do must be tested thoroughly.

N

Quicksort:sort array of size n = k+1-h

Concern for correctness as a guiding principle for program composition.
Edsger Dijkstra, 1970
http://www.cs.utexas.edu/users/EWD/transcriptions/EWDO02xx/EWD288.html

/1 Sort b[h..k] Problem. QS is very
public static void QS(int b(], int h, int k) { | inefficient for very small
if (k+1-h<=1) arrays
return; // array size < 1
int j= partition(b, h, k); Solution. Use Insertion
/1 {blh..j-1] < b[j] = b[j+1.k] } sort for arrays <10
// Sort b[h..j-1] (change base case to
QS(b, h, j-1); arrays of size < 10).
// Sort b[j+1..k]
QS(b, j+1, k);
}
Problem. If pivot value b[h] is Problem. In the worst case, the
not close to the median, space required is proportional to
algorithm is very slow (takes n —same size as the array!

time proportional to n?). . .
Solution. Use a loop to sort

Partial solution. Before some of the segments —see next
partitioning, swap b[h], slide.

b[(h+k)/2], b[k] to put median

of the three in b[h]. 4

Quicksort:sort array of size n = k+1-h

// Sort b[h..k]

public static void QS(int b[], int h, int k) {
//'inv: The initial array segment will be in order
1/ when b[h..k] is in order

while (k+1 — h >=10) { Put median of three array elements
Median_of_three(b, h, k); in b[h]. More change of pivot value
int j= partition(b, h, k); being close to the median.
/I {b[h..j~1] = b[j] = b[j+1..k] }
if (j—h) <k-j){ Only the smaller of bh..j~1] and

QS(b. h. j-1); h= j+1; b[j+1.k] is sorted recursively. This

else { ensures a space requirement of order
QS(b, j+1,K): k= j1; log n. See lecture 15-4.4 on the
’ ProgramLive CD.
}

X i Sort sections of size < 10 using
insertionSort(b, h, k);

insertion sort.

Exceptions and Errors

In Java, there is a class Throwable: "
‘When some kind of error

a0 occurs, an exception is

Throwable “thrown”

detailMessage
An exception is an instance
getMessage() of class Throwable

(or one of its subclasses)

Exceptions and Errors

So many different kind of exceptions that we have to organize them.

@]

Throwable Throwable
detailMessage A

Exception Error

getMessage() ‘

Exception RuntimeException
- - OutOfMemoryError
RuntimeException

- - - ArithmeticException
ArithmeticException

try {
try-block
(a sequence of statements)

The try-statement is executed as
follows.

1. Execute the try-block. If no
catch (ArithmeticException e) { exceptions are “thrown”, that’s the end
catch-block of execution of the try-statement.

a sequence of statements Lo .
(@ seq) 2. If an exception is thrown and it is of

the kind given in a catch-clause, then

}
catch (I0Exception ¢) { execute that catch-block.

catch-block

(a sequence of statements) 3. If an exception is thrown and it is not
} “caught” by a catch block, then the
thrown exception is thrown out further
—as if the try-statement threw it.

4. If the thrown exception is not caught in the method in which it occurs, it
is thrown to the call —so that it appears as if the calling statement threw it.

/** Parse s as a signed decimal integer and return the integer. The characters
in the string must all be decimal digits, except that the first character may
be an ASCII minus sign '-' (\u002D') to indicate a negative value.

*/
public static int parseInt(String s) throws NumberFormatException {

¥

Any method may have a throw clause to
indicate what it throws. Sometimes, the
throws clause is required.

In the lecture, we will demo all this with simple examples.
The ProgramLive CD contains more examples and it is the
best source of material to understand all this.

