Listening to events on GUIs

Sec. 17.4 contains this material. Corresponding lectures on
ProgramLive CD is a better way to learn the material.

Top finalists from a real-life “Dilbert quotes contest”

As of tomorrow, employees will be able to access the building only using individual
security cards. Pictures will be taken next Wednesday and employees will re-
ceive their cards in two weeks." (Winning quote, from Fred Dales, Microsoft)

I need is an exact list of specific unknown problems we might encounter. (Lykes
Lines Shipping)

is not to be used to pass on information or data. It should be used
only for company business. (Accounting manager, Electric Boat Company)

This project is so important, we can't let things that are more important interfere
with it. (Advertising/Marketing manager, United Parcel Service)

Doing it right is no excuse for not meeting the schedule. (Plant manager, Delco
Corporation)

Layout manager: An instance controls
the placement of components

JFrame layout manager
default: BorderlLayout.

BorderLayout layout manager:

Can place 5 components:

(Container cp= getContentPane();
Button jb= new |Button(“Click here”);
Button jl= new JLabel(“label 2”);

Place this in a
constructor of a
subclass of |Frame

cp.add(jb, BorderLayout.EAST);
cp.add(jl, BorderLayout. WEST);

pack();

setVisible(true);

Layout manager: An instance controls
the placement of components

JPanel layout manager default: FlowlLayout.
(_Click here) label 2
Box layout manager default: BoxLayout. =

[Container cp= getContentPane();

Panel p= new JPanel(); Place this in a
Button b= new |Button("Click here");

Label jl= new JLabel("label 2"); constructor of a

subclass of |Frame
p.add(b);
p-add(l); Components are placed in a
lcp.add(p, BorderLayout. CENTER); row in the order in which they
pack(); were added. With FlowLayout,
lsetVisible(true); if the window is too narrow,
components flow into the next
row(s). With BoxLayout, they
don’t.

3

Listening to events
* An event is a mouseclick, a mouse movement into or out of a
window, a keystroke, etc.
« Basically, to “listen to” a kind of event, you have to
* |. Write a method that will listen to the event.

= 2. Register an instance of the class that contains the method as a
listener for the event.

We show you how to do this for clicks on buttons, clicks on
components, and keystrokes.

Listening to a Button

|. Write a procedure
/¥ Process click of button */

public void actionPerformed(ActionEvent ae) {

}

2. Have the class implement interface ActionListener --write the class
heading as

public class C extends JFrame implements ActionListener {
We have not discussed

interfaces, and we won't.
} Wait for CS 211!

3. Add an instance of this class as an “action listener” for the button:

button.addActionListener(this);

Listening to a Button

import javax.swing.*; import javaawt* import javaawt.event*;

/¥ An instance has two buttons, exactly one of which is always enabled. */

public class ButtonDemo| extends |JFrame implements ActionListener {
/#* Class invariant: exactly one of eastB and westB is enabled */

ivate JButton westB= new JButton("west");

private |Button eastB= new |Button("east");

/¥ Constructor: a frame with title t and two buttons */
public ButtonDemo | (String t) {
super(t);
Container cp= getContentPane();
cp.add(westB, BorderLayout. WEST);
cp.add(eastB, BorderLayout.EAST);
westB.setEnabled(false); ¥* Process a click of a button */
eastB.setEnabled(true); public void actionPerformed
westB.addActionListener(this); (ActionEvent e) {
eastB.addActionListener(thi boolean b= eastB.isEnabled();

pack(); setVisible(true);

eastB.setEnabled(!b);
red: listening westB.setEnabled(b);

blue: placing }

A JPanel that is painted

The content pane has a |Panel in its CENTER and @

a “reset” button in its SOUTH.

The JPanel has a horizontal box b, which contains two
vertical Boxes.

. . . C reset)
Each vertical Box contains two instances of class Square.

Click a Square that has no pink circle, and a pink circle is drawn.
Click a square that has a pink circle, and the pink circle disappears.
Click the rest button and all pink circles disappear.

This GUI has to listen to:

(1) a click on a Button

(2) a click on a Square
these are different kinds of events and
need different listener methods

/#* An instance is a |Panel of size (WIDTH,HEIGHT). Green or red

g) - Class
lepending on whether sum of parameters of the constructor is

even or not. .. Square

*

public class Square extends JPanel {
public static final int HEIGHT= 70; // height and
public static final int WIDTH=70; // width of square
private int x, y; // Coordinates of square on board
private boolean hasDisk= false; // = "square has pink disk"

/#* Constructor: a square at (x,y) */

¥ Complement the "has pink disk" property */
public void complementDisk() {

hasDisk= ! hasDisk;
; /1 Ask the system to repaint the square

continued on next page

8

continued of class Square Class

Square
/* paint this square using g. System calls
paint whenever square has to be redrawn.*/
public void paint(Graphics g) { I Remove Pin: disk
if ((x+y)%2 == 0) g.setColor(Color.green); pul(:l:if:rs:r:)clc/aarDisk() (
else g.setColor(Color.red);

hasDisk= false;
gfillRect(0, 0, WIDTH-1, HEIGHT-1); repaint(); // Ask system to

if (hasDisk) { /I repaint square
g.setColor(Color.pink); }
gfillOval(7, 7, WIDTH- 14, HEIGHT- 14);

)

g.setColor(Color.black); @
g.drawRect(0, 0, WIDTH- I, HEIGHT-1);

g.drawString("("+x+", "+y+")", 10, S+HEIGHT/2);

A class that listens to a mouseclick
in a Square
import javax.swing*;
import javax.swing.event.*;
import java.awt.*; blue: placing
import java.awt.event;

C reset)

/#* Contains a method that responds to a

This class has several methods (that do
nothing) that process mouse events:
mouse click

mouse click in a Square */
public class MouseEvents
extends MouselnputAdapter {
/I Complement "has pink disk" property
public void mouseClicked(MouseEvent e) {
Object ob= e.getSource();
if (ob instanceof Square) {
((Square)ob).complementDisk();

mouse press
mouse release

mouse enters componen(

mouse leaves compcnenc

mouse dragged beginning in component

}

} This class overrides only the method that processes mouse clicks

}

public class MouseDemo?2 extends |Frame
implements ActionListener {
Box b= new Box(BoxLayout.X_AXIS);
Box leftC= new Box(BoxLayout.Y_AXIS);
Square b00= new Square(0,0);
Square b01= new Square(0,1);
Box riteC= new Box(BoxLayout.Y_AXIS);
Square b10= new Square(l,0);
Square bl 1= new Square(l,1);
JButton jb= new JButton("reset");

Class MouseDemo2
jb.addActionListener(this);
b00.addMouseListener(me);
b0l.addMouseListener(me);
bl0.addMouseListener(me);
bl l.addMouseListener(me);
pack(); setVisible(true);
setResizable(false);

public void actionPerformed(

MouseEvents me= new MouseEvents(); ActionEvent e) {
¥ Constructor: ... */ b00.clearDisk(); b0l.clearDisk();
public MouseDemo2() { bl0.clearDisk(); bl |.clearDisk();
super(t); }
leftC.add(b00); leftC.add(bOl); }
riteC.add(b10); riteCadd(bll);
b.add(leftC); b.add(riteC);

red: listening
Container cp= getContentPane();
cp.add(b, BorderLayout. CENTER);
cp.add(jb, BorderLayout.SOUTH);

blue: placing

Listening to the keyboard
import javaawt®; import javaawtevent®; import javax.swing*;

public class AllCaps extends KeyAdapter { red: listening
JFrame capsFrame= new JFrame(); blue: placing
JLabel capsLabel= new |Label();
|. Extend this class.

public AllCaps() {

capsLabel.setHorizontalAlignment(SwingConstants. CENTER);

capslabel.setText .

ca::sFrame.sedize((ZOO,ZOO); 3. Add this instance as a key

Container ¢= capsFrame.getConWlstener for the frame
c.add(capsLabel); 2. Override this method. It
capsFrame.addKeyListener(this); is called when a key stroke
capsFrame.show(); is detected.

} /

public void keyPressed (KeyEvent e) {
char typedChar= e.getKeyChar();
capsLabel.setText(("" + typedChar +
}
}

