
1

1

CS100J 04 April 2005
Rectangular arrays. Secs. 9.1 and 9.2

Quotes that relate to specifying a method before writing it.
A verbal contract isn't worth the paper it's written on.

What is not on paper has not been said.

If you don't know where you are going, any road will take you
there.

If you fail to plan you are planning to fail.

Do as many of the exercises on pp. 311-312 as you can to get
familiar with concepts and develop a skill. Practice in
DrJava! Test your methods, both by hand and on computer!

2

5 4 7 3b
0 1 2 3 b.length one-dimensional array

5 4 7 3

4 8 9 7

5 1 2 3

4 1 2 9

6 7 8 0

d

0 1 2 3

0

1

2

3

4

rectangular array: 5 rows and 4 columns

number of rows

number of cols

Type of d is int[][] (“int array array”,

 “an array of int arrays”)

To declare variable d:

 int d[][].

To create a new array and assign it to d:

 d= new int[5][4];

To reference element at row r column c:

 d[r][c]

3

5 4 7 3

4 8 9 7

5 1 2 3

4 1 2 9

6 7 8 0

d

0 1 2 3

0

1

2

3

4

Number of rows: d.length

Number of columns in row r: d[r].length

Using an array initializer:

int[][] d= new int[][]{ {5,4,7,3}, {4,8,9,7}, {5,1,2,3}, {4,1,2,9}, {6,7,8,0} };

“Length of one array in
array of arrays”

number of rows

number of cols

Type of d is int[][] (“int array array”,

 “an array of int arrays”)

To declare variable d:

 int d[][].

To create a new array and assign it to d:

 d= new int[5][4];

To reference element at row r column c:

 d[r][c]

4

/** = sum of first elements of rows of d. e.g. for array to
 right, it’s 5 + 4 + 5 + 4 + 6. */
public static int sum0(int[][] d) {

}

5 4 7 3

4 8 9 7

5 1 2 3

4 1 2 9

6 7 8 0

d

0 1 2 3

0

1

2

3

4

int x= 0;

return x;
// x = sum of first element of rows d[0..d.length–1]

// inv: x = sum of first element of rows d[0..r–1]
for (int r= 0; r != d.length; r= r+1) {

}
x= x + d[r][0];

5

// Process elements of b[][] in row-major order
// inv: rows 0..r-1 have been processed.
// In row r, b[r, 0..c-1] have been processed
 for (int r= 0; r != b.length; r= r + 1)

 for (int c= 0; c != b[r].length; c= c+1) }
 Process b[r][c]
}

Pattern for processing all the elements of an array

Row-major order (first row 1, then row 2, etc.)

6

/** = a String rep of b[][] (as in an array initializer) */
public static String toString(int b[][]) {

}

/** = a String rep of b[][] (as in an array initializer) */
public static String toString(int b[][]) {

int s= “{“
 // inv: Rows 0..r–1 have been appended to s */

return s + “}”;
}

for (int r= 0; r != b.length; r= r + 1) {
// Add row r to s

}

s= s + “{“;

s= s + “}”;

// inv: the partial row b[r][0..c–1] has been added to s
for (int c= 0; c != b[r].length; c= c + 1} {

}

if (c != 0) s= s + “, “;
s= s + b[r][c];

2

7

How multi-dimensional arrays are stored: ragged arrays

int b[][]= { {2, 3, 4}, {5, 1, 2} };

b a0 a0
r0
2

3

4

0

1

2

r1
5

1

2

0

1

2

r0

r1

0

1

b is a one-dimensional array of b.length elements

Its elements are one-dimensional arrays.

b[0] is a one-dimensional array of ints of length b[0].length.
Must all these arrays have the same length? No!

8

How multi-dimensional arrays are stored: ragged arrays

b a0 a0
r0
2

3

4

0

1

2

r1
5

6

0

1r0

r1

0

1

int[][] b; Declare variable b of type int [][]

b= new int[2][] Create a one-dim. array of length 2 and store its

name in b. Its elements are null, have type int[]

b[0]= new int[] {2, 3, 4}; Create int array, store its name in b[0].

b[1]= new int[] {5, 6}; Create int array, store its name in b[1].

9

Pascal’s Triangle

 1

 1 1

 1 2 1

 1 3 3 1

 1 4 6 4 1

 1 5 10 10 5 1

The first and last entries on each row are 1.

Each other entry is the sum of the two entries above it

row r has r+1 values.

0

1

2

3

4

5

…

10

Pascal’s Triangle 1

 1 1

 1 2 1

 1 3 3 1

 1 4 6 4 1

 1 5 10 10 5 1
Entry p[i][j] is the number of ways i elements
can be chosen from a set of size j !

p[i][j] = “i choose j” =

0

1

2

3

4

5

…

()i
j

recursive formula:
 for 0 < i < j, p[i][j] = p[i–1][j–1] + p[i–1][j]

11

Pascal’s Triangle 1

 1 1

 1 2 1

 1 3 3 1

 1 4 6 4 1

 1 5 10 10 5 1

Binomial theorem: Row r gives the coefficients of (x + y) r

(x + y)2 = 1x2 + 2xy + 1y2

(x + y)3 = 1x3 + 3x2y + 3xy2 + 1y3

(x + y)r = ∑ (k choose r) xkyr-k

 0 ≤ k ≤ r

0

1

2

3

4

5

12

Method to compute first r rows of Pascal’s Triangle in a ragged array

/** Return ragged array of first n rows of Pascal’s triangle.
 Precondition: 0 ≤ n */
public static int[][] pascalTriangle(int n) {
 int[][] b= new int[n][]; // First n rows of Pascal's triangle
 // invariant: rows 0..i-1 have been created
 for (int i= 0; i != b.length; i= i+1) {
 // Create row i of Pascal's triangle
 b[i]= new int[i+1];

 // Calculate row i of Pascal's triangle
 b[i][0]= 1;
 // invariant b[i][0..j-1] have been created
 for (int j= 1; j < i; j= j+1) {
 b[i][j]= b[i-1][j-1] + b[i-1][j];
 }
 b[i][i]= 1;
 }
 return b;
 }

