CS100J 04 April 2005
Rectangular arrays. Secs. 9.1 and 9.2

Do as many of the exercises on pp. 311-312 as you can to get
familiar with concepts and develop a skill. Practice in
DrJava! Test your methods, both by hand and on computer!

Quotes that relate to specifying a method before writing it.
A verbal contract isn't worth the paper it's written on.
‘What is not on paper has not been said.

If you don't know where you are going, any road will take you
there.

If you fail to plan you are planning to fail.

0 1 2 3 b.length one-dimensional array

0123 rectangular array: 5 rows and 4 columns
d 05473
1148097 Type of d is int[][] (“int array array”,
205 12 3 “an array of int arrays”)
341209 To declare variable d: IMBerlOETOWS
416 780 int d[](].

To create a new array and assign it to d:
d=new int[5][4];

To reference element at row r column c:

012 3 Type of d is int[][] (“int array array”,
“an array of int arrays”
d 0|5473 . Y ¥
as o7 To declare variable d: number of rows
int d[][].
25123 o
To create a new array and assign it to d:
314129
d=new int[5][4];
416 780
To reference element at row r column c:
d[r][c] number of cols
Number of rows: d.length “Length of one array in

Number of columns in row r: d[r].length | array of arrays™

Using an array initializer:

int[][] d= new int[][]{ {5.4,7,3}, {4.8,9,7}, {5,1,2,3}, {4,1,2,9}, {6,7,8,0} };

3

d[r][c] number of cols

/*#% = sum of first elements of rows of d. e.g. for array to 0123
right, i's 5 +4+5+4+6.% d 015473
public static int sumO(int[](] d) { 114 8 97
int x=0; 215123
// inv: x = sum of first element of rows d[0..r—1] 3la 1209

for (int r=0; r !=d.length; r=r+1) {
416 78 0

x=x + d[r][0];

}

/I x = sum of first element of rows d[0..d.length—1]

return Xx;

Pattern for processing all the elements of an array

Row-major order (first row 1, then row 2, etc.)

/I Process elements of b[][] in row-major order

/ inv: rows 0..r-1 have been processed.
Vi In row r, b[r, 0..c-1] have been processed

for (int r=0; r !=b.length;r=r+ 1)
for (int c=0; ¢ !=b[r].length; c=c+1) }

Process b[r][c]

/** = a String rep of b[][] (as in an array initializer) */
public static String toString(int b[][]) {
int s= “{“
// inv: Rows 0..r—1 have been appended to s */
for (int r=0;r !=b.length;r=r+ 1) {
// Addrowrtos
s=s+ “{%
// inv: the partial row b[r][0..c—1] has been added to s
for (int c=0; ¢ !=b[r].length; c=c + 1} {
if (c!=0) s=s+“,*
s=s + b[r][c];

¥
=4
¥

return s + “}”;

H

How multi-dimensional arrays are stored: ragged arrays

intb[][]={{2,3,4},{5, 1,2} }; m T‘
e 4
b[a0 §--- b0 | -T2 05
0|0~ 13 1)1
It - J 2[4 2,2

b is a one-dimensional array of b.length elements

Its elements are one-dimensional arrays.

b[0] is a one-dimensional array of ints of length b[0].length.
Must all these arrays have the same length? No!

How multi-dimensional arrays are stored: ragged arrays

int[][] b; Declare variable b of type int [][]

b=new int[2][] Create a one-dim. array of length 2 and store its
name in b. Its elements are null, have type int[]

b[0]=new int[] {2, 3, 4}; Create int array, store its name in b[0].

b[1]=new int[] {5, 6}; Create int array, store its name in b[1].

Pascal’s Triangle

1 0
1 1 1

1 2 1 2

1 3 31 3

1 4 6 4 1 4

1 5 10 10 5 1 5

The first and last entries on each row are 1.
Each other entry is the sum of the two entries above it

row r has r+1 values.

b0 3o >m" ‘:’,,’/‘o' 2 aE
0/10 f 1|3 16
1l - 204
8
Pascal’s Triangle 1 0
1 1 1
1 2 1 2
1 3 3 1 3
1 4 6 4 1 4
1 5 10 10 5 1 5

Entry p[i][j] is the number of ways i elements
can be chosen from a set of size j !

plillj] = “i choose j” = (Jl)

recursive formula:
for 0 <i<j, plilljl = pli-11[j-11 + pli-11[j]

10

Pascal’s Triangle 1 0
1 1 1

1 2 1 2

1 3 3 1 3

1 4 6 4 1 4

1 5 10 10 5 1 5

Binomial theorem: Row r gives the coefficients of (x +y) '
x+y)2 = 1x2 + 2xy + 1y?
x+y)? = 1x3 + 3x%y + 3xy2 + 1y3

x+yy= 3 (k choose r) xkyk
O<k=<r

Method to compute first r rows of Pascal’s Triangle in a ragged array

/** Return ragged array of first n rows of Pascal’s triangle.
Precondition: 0 < n */
public static int[][] pascalTriangle(int n) {
int[][] b= new int[n][]; // First n rows of Pascal's triangle
// invariant: rows 0..i-1 have been created
for (int i= 0;i !=b.length; i= i+1) {
// Create row i of Pascal's triangle
bli]= new int[i+1];
// Calculate row i of Pascal's triangle
b[i][0]= 1;
// invariant b[i][0..j-1] have been created
for (int j=1; j<i; j=j+1) {
bli][jl= bli-1][j-1] + bi-1][j];

}
blillil=1;
}
return b;

}

