CS100J 04 April 2005 Rectangular arrays. Secs. 9.1 and 9.2

Do as many of the exercises on pp. 311-312 as you can to get familiar with concepts and develop a skill. Practice in DrJava! Test your methods, both by hand and on computer!

Quotes that relate to specifying a method before writing it.

A verbal contract isn't worth the paper it's written on.

What is not on paper has not been said.

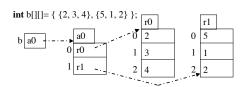
If you don't know where you are going, any road will take you there.

If you fail to plan you are planning to fail.

```
0 1 2 3 b.length
                         one-dimensional array
b 5 4 7 3
   0 1 2 3
                    rectangular array: 5 rows and 4 columns
0 5 4 7 3
                    Type of d is int[][] ("int array array",
1 4 8 9 7
                                      "an array of int arrays")
2 5 1 2 3
                    To declare variable d:
                                              number of rows
3 4 1 2 9
                      int d[][].
4 6 7 8 0
                    To create a new array and assign it to d:
                      d= new int[5][4];
                    To reference element at row r column c:
                      d[r][c]
                                              number of cols
```

```
Type of d is int[][] ("int array array",
       0 1 2 3
                                                 "an array of int arrays")
d 0 5 4 7 3
                             To declare variable d:
                                                        number of rows
     1 4 8 9 7
                                int d[][].
     2 5 1 2 3
                             To create a new array and assign it to d:
     3 4 1 2 9
                               d= new int[5][4];
     4 6 7 8 0
                             To reference element at row r column c:
                               d[r][c]
                                                        number of cols
 Number of rows:
                             d.length
                                               "Length of one array in
                                               array of arrays"
  Number of columns in row r: d[r].length
Using an array initializer:
int[][] d= new int[][]{ {5,4,7,3}, {4,8,9,7}, {5,1,2,3}, {4,1,2,9}, {6,7,8,0} };
```

```
0 1 2 3
/** = sum of first elements of rows of d. e.g. for array to
                                                         0 5 4 7 3
    right, it's 5 + 4 + 5 + 4 + 6. */
public static int sum0(int[][] d) {
                                                         1 4 8 9 7
    int x=0;
                                                         2 5 1 2 3
    // inv: x = \text{sum of first element of rows d}[0..r-1]
                                                         3 4 1 2 9
     for (int r = 0; r != d.length; r = r+1) {
                                                          4 6 7 8 0
         x=x+d[r][0];
   // x = sum of first element of rows d[0..d.length-1]
    return x;
}
```


```
Pattern for processing all the elements of an array

Row-major order (first row 1, then row 2, etc.)

// Process elements of b[|[] in row-major order
// inv: rows 0..r-1 have been processed.
// In row r, b[r, 0..e-1] have been processed
for (int r= 0; r != b.length; r= r + 1)
for (int c= 0; c != b[r].length; c= c+1) }

Process b[r][c]
}
```

How multi-dimensional arrays are stored: ragged arrays

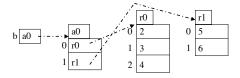
b is a one-dimensional array of b.length elements

Its elements are one-dimensional arrays.

b[0] is a one-dimensional array of ints of length b[0].length. Must all these arrays have the same length? No!

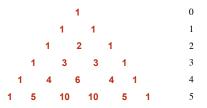
7

How multi-dimensional arrays are stored: ragged arrays


int[[] b; Declare variable b of type int [][]

b= new int[2][] Create a one-dim. array of length 2 and store its

name in b. Its elements are null, have type int[]


 $b[0] = \textbf{new int}[\] \ \{2,3,4\}; \ \ Create \ \textbf{int} \ array, store \ its \ name \ in \ b[0].$

 $b[1] = new int[] \{5, 6\}$; Create int array, store its name in b[1].

8

Pascal's Triangle

The first and last entries on each row are 1.

Each other entry is the sum of the two entries above it row r has r+1 values.

9

0

Pascal's Triangle

Entry p[i][j] is the number of ways i elements can be chosen from a set of size j!

$$p[i][j] = "i \text{ choose } j" = \begin{pmatrix} i \\ j \end{pmatrix}$$

recursive formula:

for
$$0 < i < j$$
, $p[i][j] = p[i-1][j-1] + p[i-1][j]$

10

1 1 1 1 2 1

Binomial theorem: Row r gives the coefficients of $(x + y)^r$

$$(x + y)^{2} = 1x^{2} + 2xy + 1y^{2}$$

$$(x + y)^{3} = 1x^{3} + 3x^{2}y + 3xy^{2} + 1y^{3}$$

$$(x + y)^{r} = \sum_{0 \le k \le r} (k \text{ choose } r) x^{k}y^{r-k}$$

11

Method to compute first r rows of Pascal's Triangle in a ragged array

```
/** Return ragged array of first n rows of Pascal's triangle.

Precondition: 0 ≤ n */

public static int[][] pascalTriangle(int n) {
    int[][] b= new int[n][];    // First n rows of Pascal's triangle
    // invariant: rows 0..i-1 have been created
    for (int i= 0; i != b.length; i= i+1) {
        // Create row i of Pascal's triangle
        b[i]= new int[i+1];
        // Calculate row i of Pascal's triangle
        b[i][0]= 1;
        // invariant b[i][0..j-1] have been created
        for (int i= 1; j < i; j= j+1) {
            b[i][j]= b[i-1][j-1] + b[i-1][j];
        }
        b[i][i]= 1;
    }

return b;
}
```

2