CS100J 26 October 2006
Algorithms on arrays Reading: 8.3-8.5

The searching, sorting, and other algorithms will be on the
course website, along with a JUnit testing class for them.

Please punctuate this:

Dear John, I want a man who knows what love is
all about you are generous kind thoughtful people
who are not like you admit to being useless and
inferior you have ruined me for other men I yearn
for you I have no feelings whatsoever when we're
apart I can be forever happy will you let me be
yours

Gloria

This is a neat example of the ambiguity that English can cause, if not used
properly! We try to use English properly and precisely, but ambiguity
tends to creep in because of difference in cultures in which people grow
up and simply because of differences of opinion. Read on!

Dear John:

I want a man who knows what love is all about. You are generous, kind,
thoughtful. People who are not like you admit to being useless and
inferior. You have ruined me for other men. I yearn for you. I have no
feelings whatsoever when we're apart. I can be forever happy -- will you
let me be yours?

Gloria

Dear John:

I want a man who knows what love is. All about you are generous, kind,
thoughtful people, who are not like you. Admit to being useless and
inferior. You have ruined me. For other men, I yearn. For you, I have no
feelings whatsoever. When we're apart, I can be forever happy. Will you
let me be?

Today and next Tuesday
* Look at horizontal notation for writing assertions about arrays.

* Develop several functions that process arrays. The idea is to
help you learn how to develop algorithms.

* Write a function to tell whether two arrays are equal.
* Write a function to copy an array.

* Write a function to tell whether two DNA sequences are
complements of each other.

* Look at storing a table of values in a Java array.
including adding a value to the table,
deleting the last value of the table,
deleting some other value from the table.

The material on tables is in Sec. 8.4 of course text.

Yours,
Gloria .
Horizontal notation for arrays, strings, Vectors
0 k b.length
b <= sorted >=

Example of an assertion about an array b. It asserts that:

1.

b[0..k—1] is sorted (i.e. its values are in ascending order)

2. Everything in b[0..k-1] is < everything in b[k..b.length—1]
0 k b.length
b <= sorted >=
1. b[0..k] is sorted (i.e. its values are in ascending order)
2. Everything in b[0..k] is < everything in b[k+1..b.length—1]

Maintain a table of values in an array

As a program executes, it may have to maintain a table of values, say
temperatures, within an array. The table will start out empty; then
values will be added to it. We must say where in the array the values
are stored.

int[] b= new int[5000]; // The n values in the table are in b[0..n—1]
intn=0; /10 =n <=5000

0 n b.length
b| table of values this part is unused

/I Add t to the table: /I Delete last element of table
bln]=t; // (assuming it exists).
n=n+l; n=n-1;

Maintain a table of values in an array

0 i n b.length
b| table of values ‘ this part is unused

/I Delete value b[j] from the table.

If the order of values in If the order of values in table does matter:

the table doesn’t matter: n=n-1;
=il /I Move b[j+1..n] to b[j..n—1]
bljl= bln]; // inv: b[j+1..k-1] have been moved
for (int k= j+1; k-1 !=n; k=k+1) {
blk-1]= b[k];

Find first position of x in array b. x is guaranteed to be in the array.
We use the horizontal notation to write assertions about arrays.

0 n
precondition: b ‘ ? ‘

0 i n
postcondition: b‘ X not here ‘x ? ‘

The invariant is found easily from the postcondition

0 i n
invariant: b ‘ X not here ‘ ? ‘
i=0;
while (i 1=n && b[i] !=x) {
i=i+ 13
}
7

« Linear search.Vague spec.: find first occurrence of v in b[h..k-1].
Better spec.: Store an integer in i to truthify:
postcondition: (0) v is not in b[h..i-1]
(1) Either i=k or v =Db[k]
invariant: v is not in b[h..i-1]

« Finding the min. Vague spec.: Find the min of b[h..k]
Better spec.: Precondition: h <=k (because an empty set of values has no min)
Store in i to truthify:
postcondition: b{m] is the min of b[h..k] (and it is first occurrence of the min)
invariant: b[m] is the min of b[h..t-1] (and it is first occur. of the min)

* Binary search: Vague spec: Look for v in sorted array segment b[h..k].
Better spec:

Precondition: b[h..k] is sorted (in ascending order).
Store in i to truthify:

postcondition: b[h..i] <= v and v <b[i+1..k]

* Dutch national flag.Vague spec.: b[0..n-1] contains only red, white, blue balls.

Sort it using only swaps.
Better spec.: Precondition: n >=0
Permute b[0..n-1] to truthify:
postcondition: b[0..h—1] are red balls
b[h..k—1] are white balls
b[k..n—1] are blue balls

invariant: b[h..i] <=v and v <b[j.k]
8
h k
Partition pre: ‘X‘ 2 ‘
algorithm:

X h i] k
LT ex [7 [e \
h ji k
postl: ‘ X ‘ =x ‘ >x ‘
i k

post: <X ‘ X ‘ £

10

precondition: 0 n
\ ? |
tcondition: h k n
postcondition: ‘ rods ‘ whites ‘ blues ‘
invariant : 0 h k j "
’ ‘ reds ‘ whites ‘ ? blues ‘
9
Sorting: B X
pre: ‘ ? ‘
h k
post: ‘ sorted ‘
h i k
insertionsort inv: ‘ sorted ‘ 9 ‘
h i k
selectionsort inv: ‘ <bli..k], sorted ‘ =blh..i-1], ? ‘

Quicksort will be on the course website

