
1

1

CS100J 19 October 2006
About wrapper classes and class Vector

More on loops. Reading: Secs 7.1–7.3
Do the self-review exercises on pp. 235 and 242!!!

Quotes for the Day:
Instead of trying out computer programs on test cases until they are
debugged, one should prove that they have the desired properties.
John McCarthy, 1961, A basis for a mathematical theory of computation.

Testing may show the presence of errors, but never their absence.
Dijkstra, Second NATO Conf. on Software Engineering, 1969.

A week of hard work on a program can save you 1/2 hour of thinking.
Paul Gries, CS, University of Toronto, 2005.

2

Wrapper classes and Java 1.5

Primitive type Wrapper class

byte Byte

int Int

short Short

long Long

double Double

char Character

boolean Boolean

An object of wrapper class
Integer wraps (contains) a single
int value. Allows you to view an
int value as an object.

 Integer d= new Integer(5);

a1
Integer5

MAX_VALUE
intValue()
equals() toString()

a1d

Two purposes of wrapper class:

1. An instance wraps a value of
the primitive type.

2. The wrapper class provides
several instance methods and
static methods/fields to
manipulate values of the
primitive type.

3

Wrapper classes and Java 1.5
Java 1.5 makes it easier to deal with the wrapper classes

Java 1.4
int i= d; illegal
Have to write:
int i= d.intValue();

Integer f= 5; illegal
Have to write:
Integer f= new Integer(5);

An object of wrapper class
Integer wraps (contains) a single
int value. Allows you to view an
int value as an object.

 Integer d= new Integer(5);

a1
Integer5

MAX_VALUE
intValue()
equals() toString()

a1d

Java 1.5
int i= d; legal
It does the equivalent of:
int i= d.intValue();

Integer f= 5; legal
It does the equivalent of:
Integer f= new Integer(5);

4

About class Vector (in lab today)

Java 1.4:
 Vector v= new Vector();
An object of class Vector
contains a list of objects, all of
the are Objects

v.add(ob) add object obj to v

v.get(0) = first object in v

v.get(1) = second object in v

v.size() = no. of objects in v

If you know v.get(0) is of class
Character, can do

(Character) v.get(0)

Java 1.5:
 Vector<Character> v=
 new Vector<Character>();

The objects in v have to be of type
Character.

v.add(ob) add object obj to v

v.get(0) = first object in v

v.get(1) = second object in v

v.size() = no. of objects in v

If you know v.get(0) is of class
Character, can do

Character c= v.get(0); this works

0 1 2 3 4 5 6 7 8
X Y Z X A C Z Z Zv This is a Vector of Characters

5

Understanding assertions

This is an assertion about v
and k. It is true because
chars of v[0..3] are greater
than ‘C’ and chars of v[6..8]
are ‘Z’s.

0 1 2 3 4 5 6 7 8
X Y Z X A C Z Z Zv This is a Vector of Characters

v ≥ C ? all Z’s k 6
0 3 k 8

v ≥ C ? all Z’s k 5
0 3 k 8

v ≥ C all Z’s k 6
0 k 8

v ≥ W ? ? all Z’s k 4
0 k 8

Indicate
whether
each of
these 3

assertions
is true or

false.
6

The while loop
x= 0;
x= x + 2*2;
x= x + 3*3;
x= x + 4*4;

x= 0;
int k= 2;
while (k != 5) {
 x= x + k*k;
 k= k+1;
}

To execute the while loop:

(1) Evaluate condition k != 5;

if false, stop execution of
loop.

(2) Execute the repetend.

(3) Repeat again from step (1).

Repetend: the thing to be
repeated. The block:
 {
 …
}

2

7

Develop loop to store in x the sum of 1..100.

1. How should the loop start? Make range 1..k–1
empty: k= 1; x= 0;

We’ll keep this definition of x and k true:
 x = sum of 1..k–1

2. When can loop stop? What condition lets us
know that x has result? When k == 101
3. How can repetend make progress toward termination? k= k+1;
4. How do we keep def of x, h, k true? x= x + k;

Four
loopy

questions

k= 1; x= 0;
// invariant: x = sum of 1..(k–1)
while (k != 101) {
 x= x + k;
 k= k + 1;
}
// { x = sum of 1..100 } 8

Develop loop to store in x the sum of 1..100.

1. How should the loop start? Make range h..100
empty: h= 101; x= 0;

This time, we’ll keep this definition of x and k true:
 x = sum of h..100

2. When can loop stop? What condition lets us
know that x has result? When h == 1
3. How can repetend make progress toward termination? h= h – 1;
4. How do we keep def of x, h, k true? x= x + (h – 1);

Four
loopy

questions

h= 101; x= 0;
// invariant: x = sum of h..100
while (h != 1) {
 x= x + (h – 1);
 h= h – 1;
}
// { x = sum of 1..100 }

9

Roach infestation!

/** = number of weeks it takes roaches to fill the apartment --see p 244 of text*/
public static int roaches() {
 double roachVol= .001; // Space one roach takes
 double aptVol= 20*20*8; // Apartment volume
 double growthRate= 1.25; // Population growth rate per week

 int w= 0; // number of weeks
 int pop= 100; // roach population after w weeks

 // inv: pop = roach population after w weeks AND
 // before week w, volume of the roaches < aptVol
 while (aptVol > pop * roachVol) {
 pop= (int) (pop * growthRate);
 w= w + 1;
 }
 return w;
 }

10

Logarithmic algorithm to
calculate b**c, for c >= 0

/** = b**c, given c ≥ 0 */
public static int exp(int b, int c) {
 if (c == 0) return 1;

}

Rest on identities:

b**0 = 1

b**c = b * b**(c-1)

for even c, b**c = (b*b)**(c/2)

 3*3 * 3*3 * 3*3 * 3*3 = 3**8

(3*3)*(3*3)*(3*3)*(3*3) = 9**4

Algorithm processes binary
representation of c

Suppose c is 14 (1110 in binary)

1. Test if c is even: test if last bit is 0

2. To compute c/2 in binary, just
delete the last bit.

Algorithm processes each bit of c
at most twice.

So if c is 2**15 = 32768, algorithm

has at most 2*15 = 30 recursive
calls!

Algorithm is logarithmic in c, since
time is proportional to log c

 if (c%2 = 0) return exp(b*b, c/2);
return b * exp(b, c–1);

11

Iterative version of logarithmic algorithm to
calculate b**c,
for c >= 0 (i.e. b multiplied by itself c times)

/** set z to b**c, given c ≥ 0 */
int x= b; int y= c; int z= 1;
// invariant: z * x**y = b**c and 0 ≤ y ≤ c
while (y != 0) {
 if (y % 2 == 0)

{ x= x * x; y= y/2; }
 else { z= z * x; y= y – 1; }
}
// { z = b**c }

Rest on identities:

b**0 = 1

b**c = b * b**(c-1)

for even c, b**c = (b*b)**(c/2)

 3*3 * 3*3 * 3*3 * 3*3 = 3**8

(3*3)*(3*3)*(3*3)*(3*3) = 9**4

Algorithm is logarithmic in c, since time is proportional to log c
12

Calculate quotient and remainder when dividing x by y

 x/y = q + r/y 21/4= 4 + 3/4

Property: x = q * y + r and 0 ≤ r < y

/** Set q to and r to remainder.
 Note: x >= 0 and y > 0 */
int q= 0; int r= x;
// invariant: x = q * y + r and 0 ≤ r
while (r >= y) {

r= r – y;
q= q + 1;

}
// { x = q * y + r and 0 ≤ r < y }

