
1

1

CS100J 12 March 2006
More on the loops and assertions
Start reading chapter 7 on loops.

The lectures on the ProgramLive CD can be a big help.

“O! Thou hast damnable iteration and art, indeed, able to
corrupt a saint.” Shakespeare, Henry IV, Pt I, 1 ii

“Use not vain repetition, as the heathen do.”
Matthew V, 48

Your “if” is the only peacemaker; much virtue if “if”.
Shakespeare, As You Like It.

Also: drawing frames for method calls: see pp. 93-94

Course website contains an “assignment” that you can do
to get practice, with answers. You need not hand it in.

2

Executing method calls, pp 93-94
Understanding this not only prepares you for prelim 2, it helps you
understand how recursion can work and how a method determines

what variables mean.

method name: program counter scope box

parameter 1

parameter n local variable m

local variable 1
frame for a call

number of statement
to execute next

static method: name
of class.

non-static method:
name of object

Execution of method call
1. Draw a frame for the call.
2. Assignment arg values to the pars
3. Execute method body
4. Erase frame, and, for a function,

return value of the return expression.

In step 3, look in frame for
variables/methods. If not
there, look in place given
by scope box.

3

Executing method calls, pp 93-94

public class C {
 int x;
 public int m(int p) {
 int y= p + x;

return y;
 }
}

v a1

v.m(6) evaluate this expression

a1
Cx 5

m(int p) { … }

m: 1 a1

p

y

frame for the call

non-static method:
name of object

When executing
method body, look
in frame for
variables/methods.
If not there, use
scope box to tell
where to look next.

4

The for loop: syntax. See top of page 78
for (<initialization> ; <condition> ; <increment>)

<repetend>

// Print k*k for k in the range 5..19
for (int k= 5; k <= 19; k= k+1) {
 System.out.println(k*k);
}

// Loop to process a range b..c of integers
for (int k= b ; k <= c ; k= k+1) {
 Process k
}

When faced with a
problem that might
require a loop that

processes a range of
integers:

1. Identify the range of
integers (say, b..c).

2. Write the loop as
shown to the left.

3. Then figure out how
to process k.

Separate your concerns. Focus on one thing at a time.

5

Understanding assertions. Read p. 75 and look at style notes.

int x= 0;
// { x is the sum of 0..0 }
x= x + 1;
// { x is the sum of 0..1 }
x= x + 2;
// { x is the sum of 0..2 }
x= x + 3;
// { x is the sum of 0..3 }

An assertion is a true-false statement about the variables used
in a program. It is usually placed in the program at places
where we expect it to be true.

kx

int x= 0; int k= 1;
// { x is the sum of 0..k–1 }
x= x + k; k= k + 1;
// { x is the sum of 0..k–1 }
x= x + k; k= k + 1;
// { x is the sum of 0..k–1 }
x= x + k; k= k+1;
// { x is the sum of 0..k–1 }

The assertion “x is the sum of 0..k–1”
is invariantly true.

“invariant” means “unchanging”.
6

Understanding assertions
An assertion is a true-false statement about the variables used
in a program. It is usually placed in the program at places
where we expect it to be true.

kx

int x= 0; int k= 1;
// { x is the sum of 0..k–1 }
x= x + k; k= k + 1;
// { x is the sum of 0..k–1 }
x= x + k; k= k + 1;
// { x is the sum of 0..k–1 }
x= x + k; k= k + 1;
// { x is the sum of 0..k–1 }

The assertion “x is the sum of 0..k–1”
is invariantly true.

“invariant” means “unchanging”.

// Set x to sum of 1..3

for (int k= 1; k <= 3; k= k + 1) {
x= x + k;

}

// { invariant: x is sum of 0..k–1}

2

7

The invariant of a loop that processes a range

The invariant tells you
something about the
integers 0..k–1 that

have been processed. It
is true before and after

each iteration of the
loop —just before and

after the loop condition
is evaluated.

// Set x to sum of 1..3

for (int k= 1; k <= 3; k= k + 1) {
x= x + k;

}

// { invariant: x is sum of 0..k–1}

// { inv: b..k-1 have been processed }
for (int k= b; k <= c; k= k+1) {
 Process k;
}

8

1. What is the
invariant?

2. Is any
initialization

needed?
3. How is k to
be processed?

// Print squares of ints in range m..n

// { inv: }
for (int k= m; k <= n; k= k + 1) {

// Process k;

}
// {squares of ints in range m..n have been printed }

// Store in t a copy of string s but with a blank inserted after each char

// { inv: }
for (int k= 0; k < s.length(); k= k + 1) {

// Process k;

}
// { t = s[0..s.length()–1] but with a blank inserted after each char }

9

1. What is the
invariant?

2. Is any
initialization

needed?
3. How is k to
be processed?

// { n >= 2 } —we take this as true at this point
b= true;
// Store false in b if some integer in 2..n–1 divides n

// { inv: }
for (int k= 2; k <= n–1; k= k + 1) {

// Process k;

}
// { b is false iff some integer in 2..n–1 divides n }

10

1. What is the
invariant?

2. Is any
initialization

needed?
3. How is k to
be processed?

// { String s has at least 1 character }
// Set c to the largest character in String s

// { inv: }

for (int k= 0; k < s.length(); k= k + 1) {
// Process k;

}
// { c is the largest character in s[0..s.length()–1] }

