
1

1

CS100J 7 September 2006
Today’s topic: Customizing a class (continued)

Quote for the day:
There is no reason anyone would want a computer in their
home. --Ken Olson, president, chairman and founder of Digital
Equipment Corp. (DEC), 1977.
The company was a huge player in computer hardware and software in CS
academia in the 1970’s. The old PDP machines were well known. The VAX
had unix on it, and C, and Lisp. It was the main computer in most CS
departments of any stature. DEC was bought by COMPAQ in the late 1990’s.

Quiz 2 on Tuesday:
How do you draw a folder of a subclass?
How do you evaluate a new expression (see slide 10)?
What is the purpose of a constructor (see slide 9)?

2

CS100J, 7 September 2006

Reading for this lecture: Section 1.4, 1.5, and 1.7 (not 1.6).

Read all the “style notes”, too.

Summary of lectures: On course home page, click on
“Handouts” and then “Outline of lectures held so far”.

Today: Class Object, method toString().
 Fields (variables in a folder),

and getter and setter methods for them.
 Constructors.

 Static components.

3

Class Object: The superest class of them all

See 1/2-page section 4.3.1 on page 154.

The reason for this will become clear later.

You need this information to do assignment A1.

Every class that does not extend another one automatically
extends class Object.

public class C { … }

is equivalent to

public class C extends Object { …}

4

Class Object: The superest class of them all
Bill

Patientname B. Clinton

address New York
owes $250.00

See 1/2-page section 4.3.1 on
page 154.

Bill

Patientname B. Clinton

address New York
owes $250.00

equals(Object)

toString()

this is really this

Object

Because it is always there, to avoid
clutter, we don’t generally draw the
partition for superclass Object

5

Method toString()

Bill

Patientname B. Clinton

address New York

owes

toString()

$250.00

equals(Object)

toString()

Object

Convention: c.toString() returns a
representation of folder c.

Put following method in Patient.

public String toString() {

 return name + “ ” + address +
 “ ” + owes;

}

In appropriate places, the
expression c automatically
does c.toString()

6

Field: a variable that is in each folder of a class.

a0

Chaptertitle …

number …
previous …

public class Chapter {

 private String title; // Title of the chapter

 private int number; // Number of the chapter

 private Chapter previous; // previous chapter (null if none)
}

We generally make fields
private instead of public, so
that they cannot be referenced
from methods that are outside
the class.

2

7

Getter and setter methods

a0

Chaptertitle …

number …
previous …

/** An instance describes a chapter of
 a book */
public class Chapter {
 private String title; // Title of the chapter

 /** = the title of the chapter */
 public String getTitle() {
 return title;
 }

 /** Set the title of the chapter to t */
 public void setTitle(String t) {
 title= t;
 }

}

Getter methods get or retrieve
values from a folder.

Setter methods set or change
fields of a folder

getTitle() setTitle(String t)

8

We need a way to initialize fields
when a folder is first created

new Chapter()

creates a folder but doesn’t allow us to
say what values should be in it.

We would like to be able to say:

new Chapter(“I am born”, 1, null)

to set the title to “I am born”, the
chapter number to 1, and the previous
chapter to null.

For this, we use a new kind of method, the constructor.

a0

Chaptertitle …

number …
previous …

getTitle() setTitle(String t)

9

The purpose of a constructor is to initialize (some) fields
of a newly created folder

/** An instance describes a chapter of
 a book */
public class Chapter {
 private String title; // Title of chapter
 private int number; // No. of chapter
 private Chapter previous; // previous
 // chapter (null if none)

 /** Constructor: an instance with title t,
 chapter number i, and previous
 chapter p (null if none) */
 public Chapter(String t, int i,
 Chapter p) {
 title= t;
 number= i;
 previous= p;
 }
}

a0

Chaptertitle …

number …
previous …

getTitle() setTitle(String t)

Chapter(String t,
 int i, Chapter c)

The name of a constructor is the name of the class.

Do not put a type or void here
10

New description of execution of a new-expression

new Chapter(“I am born”, 1, null)

1. Create a new folder of class Chapter,
 with fields initialized to default

values (0 for int, for example) –of course,
put the folder in the file drawer.

2. Execute the constructor call

Chapter(“I am born”, 1, null)

3. Use the name of the new folder as
 the value of the new-expression.

Memorize this new definition! Today! Now!

a0

Chaptertitle …

number …
previous …

getTitle() setTitle(String t)

Chapter(String t,
 int i, Chapter c)

11

You can have more than one constructor

/** Constructor: an instance with title t,
 chapter number i, and previous chapter
 p (null if none) */
public Chapter(String t, int i, Chapter p) {
 title= t;
 number= i;
 previous= p;
}

/** Constructor: an instance with title t,
 chapter number i, and previous chapter null */
public Chapter(String t, int i) {
 title= t;
 number= i;
 previous= null;
}

Makes it easier, more flexible, for the
“user” who is using the class

12

A static field does not appear in each folder.
It appears in the file drawer, by itself, on a piece of paper.

There is only ONE copy of it.

a0

Chaptertitle “peace”

public class Chapter {
 private int title; // Number of chapter
 private static int numberOfChapters= 0;
}

a1

Chaptertitle “truth”

numberChaps 2
File drawer for class Chapter

Reference the static
variable using

Chapter.numberChaps

Use a static variable when you want to accumulate
information about all (or some) folders.

