
CS100J About the Final Monday 11 December 7:00PM to 9:30PM Uris Auditorium

 Review sessions, week of 4 December

Day Time Instructor
room

Topic

Mon 1PM Aijaz
Phillips 203

Executing sequences of
statements that involve
creating new objects

Mon 2PM Aijaz
Phillips 203

Writing constructors in
classes and subclasses

Mon 3PM No review session
Tue 1PM Lin Li

Phillips 203
Matlab

Tue 2PM Gries
Phillips 203

Developing loops from
invariants

Tue 3PM Gries
Phillips 203

Developing required al-
gorithms

Wed 1PM Haque
Phillips 101

Executing method calls;
drawing frames for calls

Wed 2PM Yessenalina
Phillips 101

Casting and related topics

Wed 3PM Guarino
Phillips 101

Recursion

The final is cumulative, covering all topics in the course
except as described below. So, you have to know every-
thing that was covered in the three prelims. See the
handouts on the three prelims (on the course web page).

You do not have to study the following topics: Ex-
ception handling, abstract classes, reading a file or the
keyboard, applications, applets.

You have to know:

1. Multi-dimensional arrays. See below.

2. Placement of components in a GUI. The default
layout managers for a JFrame, a JPanel, and a Box
and how that manager arranges components in it. What
these basic components are: JButton, JLabel,
JTextField, JTextArea. You do not have to know
how to “listen” to an event.

3. Matlab. See below.

4. Several algorithms. You know this already, but we
repeat it for emphasis. any one of the following algo-
rithms can be asked for. We may simply write “show
binary search”, or “Show us the partition algorithm”,
and you have to give the precondition, postcondition
and loop invariant and then develop the algorithm. Ex-
pected: the loop with initialization is developed from the
invariant; a loop that has nothing to do with the invari-
ant you write gets little credit. Everyone should get full
credit on this question because it is simply a matter of
sitting down and practicing developing known algo-
rithms from their specifications.

Linear search, Binary search, Dutch National Flag, Par-
tition algorithm, Selection sort, Insertion sort.

5. Multi-dimensional arrays. You have to know about
rectangular arrays and ragged arrays —in which rows
may have different lengths. This includes knowing how
to access the number of columns in a given row and
knowing how to create a rectangular array and a ragged
array. You have to know how arrays are stored as ob-
jects (folders) and to be able to draw an array, as done
on prelim 2.

MATLAB
0. The notation a:b to denote the row of integers [a
(a+1) (a+2) ... b]. The notation

a : increment : b

1. The basics of creating arrays, using

(a) row vector notation: [10 20 30]

(b) column vector notation [10; 20; 30]
(c) rectangular array notation

 [10 20 30; 40 50 60]
(d) stacking rows: if x is [10 20],

 then [x x] is [10 20 10 20]
(e) stacking columns. if u = [1 2]; v = [3 4]
 then [u; v; u] is
 1 2
	

 3 4
	

 1 2

(f) for a row vector, size(x) is the number of ele-
ments. For an array, size(x) is the number of ele-
ments in each dimension. For this purpose, a column
vector is really a 1-by-n array.

(g) transpose b' of an array or vector b

(h) functions zeros(n), zeros(n,m), ones(n),
and ones(n,m)

(i) elementwise addition, subtraction, multiplication,
division of an array by a scalar or a scalar by an array,
e.g. [10 5 2] + 5.

 (j) Elementwise operations on arrays:
 addition b + c
subtraction b – c
multiplication b .* c
division b ./ c
exponentiation b .^ c

(k) functions max, min, sum, cumsum, prod, cum-
prod, median, abs, floor, ceil, sqrt

(l) Defining functions, e.g.

CS100J About the Final Monday 11 December 7:00PM to 9:30PM Uris Auditorium

 % = the mean and standard deviation of nonempty row
vector x
function [mean,stdev] = stat(x)
n= length(x);
mean= sum(x)/n;
stdev= sqrt(sum((x-mean).^2)/n);

 (m) if-statements, e.g.
 d= sqrt(b^2 -4*a*c);
if d>0
	

 r1= (-b+d)/(2*a);
	

 r2= (-b-d)/(2*a);
else
	

 disp(`Complex roots')
end
	

if (x>y) & (x>z)
	

 maxval= x;
elseif y>z
	

 maxval= y;
else
	

 maxval= z;
end

 (n) Be able to put together expressions that calculate a
sum (or product) or cumulative sum (or product) of n
terms of a series. For example, we wrote this code for
the cumulative sum of n approximations to pi using
Wallis's formula

 pi/2= 2*2/(1*3) + 4*4/(3*5) + ...

 evens= 2 * (1:n)
	

 odds= evens – 1
	

 answer= 2*cumsum((evens .^ 2) ./
 (odds .* (odds + 2))

Here are some infinite sums to practice on.

5 + 5 + 5 + 5 + ...

1 - 1 + 1 - 1 + 1 - 1 + ...

1/(1*2*3) + 1/(3*4*5) +
 1/(4*5*6) + ...

1/1 + 1/2 + 1/3 + 1/4 + ...

1/(1*1) + 1/(2*2) + 1/(3*3) +
 1/(4*4) + ...

1/1 - 1/2 + 1/3 - 1/4 +
 1/5 - 1/6 + ...

1*2/(2*3) + 2*3/(3*4) +
 3*4/(4*5) + ...

