
CS100J A6 Eating Brussel Sprouts Fall 2006 Due: 23:59, Tue, 21 Nov

Preamble

We explain a game that you will write. Then, we explain what you have to do for this assignment, which
gives you practice using two-dimensional arrays, loops, and if-statements and working with
information. You will also see GUIS (graphical user interfaces) at work, you will see how a program that
uses a GUI can be structured, and you will learn how a Java program "listens" for keystrokes and responds
to them.

static

Spend time reading this handout so that you thoroughly understand what we are asking for. Do this
you start programming! Take notes as you read.

before

Overview of the game

You will write a two-player game. It is not the game called (click on such links, please) that was created by John Conway. Jack and Sue are
caught in a maze, and they frantically run around and eat

Sprouts
Brussels sprouts.

The maze

To the right is a sample maze. Jack () is in the upper-left corner, and Sue () is near the upper-right. is an
inner wall, is a hallway, - is a horizontal outer wall, | is a vertical outer wall, and is a .

J S *

. @ Brussels sprout

|J..S.|
|.***.|
|..@*.|
@*.@.

The maze is given in a file, with one line of the file for each line of the maze. The maze is rectangular. Jack and Sue must appear inside the maze. The
outside edges of the maze are walls, as indicated above: a hallway, a , Jack, or Sue may not be on the outside edge. Brussels sprout

Controls

The maze is displayed in a and the players move using the keyboard. The keys to move Jack and Sue are shown
to the right (like the four arrow keys on your keyboard); both have the "inverted T" layout, which is used in many games.
The keys look like this:

JFrame,

 s i
 zxc jkl

Jack

s: up
x: down
z: left
c: right

Sue

i: up
k: down
j: left
l: right

Game play

The players, Jack and Sue, move around the maze. They cannot move into walls. If they try to move into walls, nothing happens. Jack and Sue can
occupy the same space, although if this happens only Sue will show on the map (Jack is a gentleman). When they move over a they eat it
and the disappears. The game keeps track of how many each has eaten. When there are no left, the game ends a
message announces how many each player ate and who won.

Brussels sprout
@ Brussels sprouts Brussels sprouts

Brussels sprouts

You can download a finished version of this game from the website or just click here: (At some point, we will show you how you can make
your own Java programs into jar files.) Here are two mazes that you can play with: . Put these two mazes in a directory, along
with brussels.jar. When the game starts, it asks for a maze to play with, using a dialog window; use that dialog box to navigate to the appropriate
directory and select one of the mazes.

brussels.jar
bigmaze.txt littlemaze.txt

The classes

The program uses five classes, as indicated in the diagram on the right. Class is used
to read in the initial maze and create the necessary instances of the rest of the classes.

Brussels

Class is the major calculator. It maintains the maze, it keeps track of the two players and
the number of sprouts still left, and it is the only one to actually change the maze because of
keystrokes. It is the engine. It is important that knows about the GUI or the key
listener (see below). All it does is keep track of the maze.

Maze

Maze nothing

Class is an extension of . An instance of this class maintains the GUI. It has a
procedure , which is called when the GUI has to be updated; in turn, this procedure
calls instance for information it needs (e.g. how many are in the maze).

MazeGUI JFrame

update()

Maze a1 Brussel Sprouts

Class "listens" for keystrokes on the keyboard. When there is a keystroke, its method is called by the system. This
method figures out what key was typed and calls a method of instance a1 to handle the keystroke; after that, it calls in order to change
the GUI.

MazeKeyListener keyTyped(k)

Maze a2.update()

As you can see, each class, or instance of the class, performs its own task. In this manner, each class can be written fairly easily. When writing programs
that use GUIs, one generally tries to separate the GUI maintenance from the calculation in the program, as we have done.

Files to download and keletons for four classes

Download skeleton.zip and unzip it to get (1) a jar file of the game that you can play, (2) two mazes, and (3) skeletons for four classes: Brussels.java,
Maze.java, MazeGUI.java, and MazeKeyListener.java. Put them all in the same directory.

Your assignment

Most of what we have told you thus far is just background, giving you a taste for what is to come and giving you a little idea about how GUI programs
are put together. We now list the tasks to do for this assignment, in order.

Task 1

Write class , an instance of which represents a player. The other classes won't compile until this class is written, so don't open the other classes in
DrJava until this is written. You figure out what fields it needs, based on the methods that it requires. Note that an instance has no knowledge of the maze
itself. It just keeps track of where the player is and how many the player has eaten.

Player

Brussel Sprouts

Brussels() Constructor: a player at position (0,0), who has eaten no brussel sprouts

getRow() = the row number in which this player currently is

getCol() = the column number in which this player current is

getNumSprouts() = number of brussel sprouts this player has eaten

move(int r, int c) Move this player to row r column c of the maze (this a procedure)

eatSprout() Register that this player has eaten another sprout (this a procedure)

Task 2

Write (and test thoroughly) function of class . This method reads in a maze from a file and returns a two-dimensional char
array that contains it. Here are some points to consider.

getMap(String) Brussels

The array cannot be created until the number of rows is known. We suggest that you use a temporary , as follows. Read the lines of the file one
by one, adding them to the . Once line has been read, the number of columns is known. Once the lines have been read, the number of rows
is known. So, now, create the two-dimensional array. Then, process the elements of the , one at a time, placing the characters in it into the
appropriate positions of the two-dimensional array.

Vector

Vector one all
Vector

Notes: A suitable method to obtain a buffered reader is already in class , for you to use. To help you check out, we have included a
method .

Brussels getMap

Brussels.toString

Task 3

Your next task is to write and test all the methods of class . As mentioned above, class contains the methods that manipulate the internal
representation of the maze, including the positions of the two players. Besides the constructor, there are 6 other methods bodies to write. Most of these
are simple.

Maze Maze

Important point: Note that parameter of the constructor is a rectangular array that contains and to mark the position of the two players.
However, when this maze is stored in field , the and should NOT be put in --they should be replaced by . Instead, the positions of the
players are given by the two Player objects and .

m 'S' 'J'

b 'S' 'J' b HALL

JACK SUE

Important point. Do NOT use the character constants , etc. in writing the method bodies. Instead, rely on the static constants , , etc.
The same goes for directions. Don't use integers like -1 and +1 to indicate directions. Instead, use the static constants , , ,

, and . Points will be deducted if you don't follow these rules.

".", "@" HALL SPROUT

LEFT RIGHT NOCHANGE

UP DOWN

Task 4

You last task is to write the body of method of class . This method is called when the window has the focus and a
key is typed. This method should determine what key was typed and perform appropriately. If it is one of the keys that are part of the game,
the method should call appropriately. Note that this method has access to the two players (using and) and also to the
static constants of , like . It should make use of the constants and not use integer constants directly, like -1 or 0 or 1.

keyTyped MazeKeyListener JFrame

szxcijkl

maze.move maze.JACK maze.SUE

Maze Maze.RIGHT

Once this method is working properly, you will be able to play the game with your friends. Have a good time with it.

What to submit

On the CMS, submit your files Player.java and Brussels.java by midnight, 21 November.

