
CS100J Fall 2006 Assignment A5. Mozart's Musikalisches Würfelspiel. Due Sunday, 5 November

The inspiration for this assigment comes from a similar assignment given by Kevin Wayne and Robert Sedgewick in
Computer Science, Princeton. The assignment illustrates the use of two-dimensional arrays and also random-number
generation in an interesting setting.

In 1787, Wolfgang Amadeus Mozart created a dice game (). In the game, one
composes a two-part waltz by pasting together 32 of 272 precomposed measures (written by Mozart) at random. We will
do a variation of Mozart's original Würfelspiel.

Mozart's Musikalisches Würfelspiel

Your program will generate a waltz consisting of a trio followed by a minuet. Each is 16 measures long, and the measures
are generated at random according to a fixed set of rules.

 The trio consists of 16 measures. There are 96 possible Trio measures, named through . To
determine which one to play, roll one fair die and use the following table.

For example, if you roll 5 for measure 3, then play measure 28.

Trio. T1.wav T96.wav

 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 measure number
--
 1 72 6 59 25 81 41 89 13 36 20 46 79 30 95 19 66
 2 56 82 42 74 14 7 26 71 76 5 64 84 8 35 47 88
 3 75 39 54 1 65 43 15 80 9 34 93 48 57 58 90 21
 4 40 73 16 68 29 55 2 61 22 67 49 77 69 87 33 10
 5 83 3 28 53 37 17 44 70 63 85 32 96 12 23 78 91
 6 18 45 62 38 4 27 52 94 11 92 24 86 51 60 50 31

The minuet consists of 16 measures. There are 176 possible Minuet measures,
named through . To determine which one to play, roll two fair dice, and use the following table.
Minuet.

M1.wav M176.wav

 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 measure

 2 96 22 141 41 105 122 11 30 70 121 26 9 112 49 109 14
 3 32 6 128 63 146 46 134 81 117 39 126 56 174 18 116 83
 4 69 95 158 13 153 55 110 24 66 139 15 132 73 58 145 79
 5 40 17 113 85 161 2 159 100 90 176 7 4 67 160 52 170
 6 148 74 163 45 80 97 36 107 25 143 64 125 76 136 1 93
 7 104 157 27 167 154 68 118 91 138 71 150 29 101 162 23 151
 8 152 60 171 53 99 133 21 127 16 155 57 175 43 168 89 172
 9 119 84 114 50 140 86 169 94 120 88 48 166 51 115 72 111
 10 98 142 42 156 75 129 62 123 65 77 19 82 137 38 149 8
 11 3 87 165 61 135 47 147 33 102 4 108 164 144 59 173 78
 12 54 130 10 103 28 37 106 5 35 20 31 92 12 124 44 131

 This is generated using mozart's original process; here is the .Example. sample waltz accompanying musical score

There are 6**16 * 11**16 different possible waltzes. Since this is over 10**23 different possibilities, each time you play
the game you are likely to compose a piece of music that has never been heard before. Mozart carefully constructed the
measures to obey a rigid harmonic structure, so each waltz reflects Mozart's distinct style.

 You will use a number of ideas for the first time: generation of random numbers, two-
dimensional arrays, playing music stored in a .wav file, saving in a file on your hard drive a array, and more. To
help you learn all this and also to give you more advice on how to go about developing and testing programs, we lead you
through this assignment in a series of steps. Follow them carefully. When doing one step, don't start the next one until the
current one is done and the methods you wrote for it work!

About this assignment.
double

You will also have to submit a file MozartTester.java, which will contain test cases that you used in testing methods.

 the following and place them all in a new folder for the assignment.
File . Class contains methods for manipulating and playing music in wave (.wav) format.
File . You will be writing class . We have provided you with a few components to help out.

Step 1. Download
StdAudio.java StdAudio

Mozart.java Mozart

File (34MB) OR (25MB). If you have a PC, you probably have to use waves.zip; mac people can use
the smaller .sitx file. After downloading a file, unpack it into a folder that contains all the .wav files for the
measures used in Mozart's Musikalisches Würfelspiel. Put folder in the folder with the two .java files.

waves.zip waves.sitx
waves

waves

. Your program will have to "roll a die" to produce a random number in the range 1..6.
At the beginning of class , there is a declaration of a static variable . An object of class

 has methods for generating "random" numbers. Please bring up the in your
favorite browser, find class , and read about it. You will use function . Evaluation of
a call yields an integer that satisfies . Use function in writing a method
with the following specification in class :

Step 2. Generating rolls of a die
Mozart Random generator

java.util.Random Java 1.5 API package
Random nextInt

generator.nextInt(t) i 0 <= i < t nextInt

Mozart

/** = a roll of a die --an int in the range 1..6 */
public static int throwDie()

Function has to be tested to make sure that it will (1) produce only integers in the range 1..6 and (2) will
produce all integers in that range at least once. In JUnit class , write a method that will test . In
the method, have a loop that calls 200 times and tests each value it produces. In addition to
method , you can use method , which passes the test if is true and stops testing if is
false. For example, you could use something like this:

throwDie

MozartTester throwDie

throwDie

assertEquals assertTrue(b) b b

assertTrue(1 <= die && die <= 6);

 Later, you will be writing a function that produces a array of file
names corresponding to measures to be played. In order to see the results of the method, you have to see the array
of . For that purpose, write and test the following function.

Step 3. A method for printing a String array. String

Strings

/** = a representation of array s --the list of Strings in the array, with each pair separated by ", " and the list delimited by
"[" and "]".
Example: For array {"fi", "se", "th"}, return "[fi, se, th]" */
public static String arrayToString(String[] s)

Write a method in class to test it. Be sure you test arrays of length 0, 1, and bigger. MozartTester

 Before you work on creating a random waltz, first create a waltz assuming that each die
thrown has the value 1, so that all the file names in a roll of 1 for the trio and a roll of 2 of the minuet are chosen. This
will allow you to concentrate on constructing file names, as we discuss below. Thus, write a method with this specification:

Step 4. Generating a waltz.

/** = an array that contains the names of all the files
described by a roll of 1 for the trio and a roll of 2 for the minuet.
Each filename must be of the form

"waves/T<integer>.wav" or "waves/M<integer>.wav",

where <integer> is some positive integer.
Thus, the files are expected to be in directory waves.*/
public static String[] create1Spiel()

We have given you arrays and in class . Their meaning are given as comments on their declarations.
As an example, representing file , is the number to use for the musical phrase to use
for a roll of a 2 in measure 2. So, you have to put the into the array returned by this function.
Note that "/" is used to separate folder name from file name . Even if you have a PC, you must use "/" and
not a backslash.

minuet trio Mozart

minuet[0][2] = 22, waves/M22.wav

String "waves/M22.wav"

waves M22.wav

After writing this function, check it out by executing in the interactions pane and then
displaying the contents of using and checking to make sure that the write file names are displayed.
You do not have to write a test method in to test ; it would be too time consuming.

s= Mozart.create1Spiel()

s Mozart.toString(s)

MozartTester create1Spiel

Make sure that the result of is an array of size 32! Mozart.create1Spiel()

 Now write the following method to play all the files whose names are in an array. Look in
class for a method that will play the music in a file given by a file name. You will notice that there is a pause
between measures when the music is played. Later, we investigate eliminating the pauses. Do NOT assume that parameter s
is an array of 32 elements; it can be any length.

Step 5. Listen to the music!
StdAudio

/** Play the music given by files whose names are in s, in order*/
public static void play(String[] s)

Playing your array should produce the same music as this file: .mozart12.wav

 Wouldn't you like to get rid of the pauses? One way to do this is to build a single file that contains the music in
the files given by an array like in the past two steps. Write the following method:
Step 6.

s

/** Put the measures given by the file names in s into
a new array and return the new array */
public static double[] build(String[] s)

To do this, you have to read a .wav file and place its contents into a array; find a method to do this in
class .

double
StdAudio

Your method should do the following. First, determine the length of the output array --read all the .wav files given by to
do this. Then, declare the output array of the appropriate size. Finally, read the .wav files (again) and copy their values into
the output array, one after the other. To help you out, we already placed a method in class .

s

copy Mozart

ü Write the following method:Step 7. Creating a Mozart Musikalisches W rfelspiel.

/** = an array of random measure file names:16 for trios followed by16 for minuets. The filenames are of
the form "waves/M<integer>.wav" and "waves/T<integer>.wav", so the files are expected
to be in directory waves, which should be in the same folder as this class. */
public static String[] randomSpiel()

This method should produce a random waltz as described at the beginning of this document. For this method, you can use
method , which you wrote earlier, to throw a die to get a number in the range 1..6. Also, use arrays

and in class when generating random names of files, as in method . You do not need a
method in to test it.

throwDie

minuet trio Mozart create1Spiel

MozartTester

 We write a method to generate a waltz and save its .wav file so that you can play it later --or so that
you can email it home to let your family know that you have been turned on by classical music and Musikalisches
Würfelspiel. You will want to use method in writing this procedure. The method body will create a waltz,
build a double array that contains all the measures, and then save the waltz on your hard drive. Be careful in testing it.
Make sure the name that you use is not already the name of a file on your desktop, or you will lose that file. You do not
need a method in to test it.

Step 8. Saving a file.

StdAudio.save

MozartTester

/** Create a random waltz (using function randomSpiel()) and store it on the desktop of this computer
under the name filename. If filename does not end in ".wav", then put that extension at the
end of the filename before creating the file.*/
public static void randomSpiel(String filename)

. Submit your files and on the CMS by the due date and
time. As usual, your methods should have precise and complete specifications, written as javadoc comments. There will be
severe deductions if these javadoc comments are not suitable. We suggest that you generate the javadoc API specs and look
at them carefully.

Step 9. Submitting your assignment Mozart MozartTester

