
CS100J Lab 08. Abstract classes Spring 2005

Name ___________________ Section time _____________ Section instructor _________________

This lab introduces you to the concepts of an "abstract class" and "abstract method". The topic is covered in Section 4.7 of the
class text and on lesson page 4-5 of the ProgramLive CD. Your lab instructor will present the concepts to you (which are quite
simple). You will obtain a few Java classes from the course website, load them into Java, and change one of the classes from a
normal class to an abstract class. You will be asked to look at the classes and modify them a bit. You will need a sheet of paper
to write information about this lab. Show it to your instructor when you have finished. Because you probably don't have text
with you, we summarize the material here.

In some situations, we don't want a programmer to instantiate (create instances of) a class. The class is there only to
provide a superclass of other classes. But there is no way to prevent programmers from instantiating the class.
Problem 1.

. Change the class to an , because abstract classes cannot be instantiated. To do this, change the first line
of the class, say class , from
Solution abstract class

C

to
C { public class

 C {public abstract class

 Make a class abstract so that it cannot be instantiated.Purpose of making a class abstract.

 In abstract class , to the right, method is defined ONLY so that it can
be overridden. We don't want programmers to call this method; they should call only the overriding
methods in the subclass. But we can't force them to override the method, and if they don't, the one
in will be called..

Problem 2. DemoShapes DrawShapes

DemoShapes

. Change to an abstract method, because abstract methods cannot be called (but can
be overridden). To do this, change as shown below. There are two changes:
(1) keyword is inserted and (2) the method body is replaced by a semicolon.

Solution DrawShapes

DrawShapes

abstract

to
 DrawShapes(...) { ...} public void

 DrawShapes(...) ;public abstract

 Make a method in an abstract class abstract so that it cannot be called. Purpose of making a method abstract.

. Start a new directory on your hard drive. Download these five files into the
directory: . You can also obtain
them by opening the course web page in a browser and clicking "Labs" in the lefthand column; this opens a page
that has links to these files.

Step 1. Open some files in DrJava
DemoShapes.java Shape.java Parallelogram.java Rhombus.java Square.java

Open files DemoShapes and Shape in DrJava and compile the program. In the Interactions pane, execute this call:

DemoShapes.m();

A figure like that on the right (above) should appear. The output in the Java console is a description of seven shapes that are
drawn in the window.

Step 2. Make class abstractShape

Open file and place the following statement in method , just before the declaration (and
initialization) of variable :
(a) DemoShapes.java paint

h

Shape s0= new Shape(5,5);

Execute the program; it should still run. On your paper, write what this statement does.

Open file and place keyword just before keyword in the class definition, so that the third line
of the file looks like
(b) Shape.java abstract class

public abstract class Shape {

You have made the class into an abstract class. Try executing the program again. Do you get an error message? Write down the
error message and explain in a few words why it is an error. Now delete the statement that you placed in file
in part (a) and run the program again. You should no longer have an error message.

DemoShapes.java

Step 3. Make method of class abstractdrawShape Shape

In file , change method to:Shape.java drawShape

public abstract void drawShape(Graphics g);

Note that the body is replaced by a semicolon. You have made this method into an abstract method. Execute the program; it
should still execute.

{}

Open file and comment out method (put before the method and after the method). Try
to execute the program. Do you get error messages? Write on your paper the error message that deals
with class . Write a few words explaining what the error is.

Parallelogram.java drawShape /* */

Parallelogram

Remove the comment symbols, so that is again defined in . Execute the program again just to be
sure that you removed them correctly.

drawShapes Parallelogram

Class is designed to be the root of all classes that draw a shape. We have the
following hierarchy: -> -> -> -> , because a square is a rhombus with angle 90
degrees, a rhombus is a parallelogram all of whose sides are equal, and a parallelogram is a shape.

Step 4 Add Arms. Shape

Object Shape Parallelogram Rhombus Square

The shape that appears when the program is executed looks almost like a person. It is drawn using methods of instance of class
that is attached to the that opens. The only method you need from Graphics is setColor and getColor. You will

do most of your work in this step 4 using the Shape classes.

g

Graphics Frame

You will give the person arms. All the changes you will make will be in class . Read through
method of .

DemoShapes

paint DemoShapes

First, comment out the code that produces the two black lines (in DemoShapes). Hint: look for where the color is set to black.

Each arm is a green rectangle that is 60 pixels long and 20 pixels high. Its leaning factor (the third parameter of the
Parallelogram constructor) is 0, which means that it is a rectangle. The leaning factor is defined on Lesson page 4.4 of the
ProgramLive CD (see also the comment at the beginning of class Parallelogram), but you really don't have to read about it.
Later, when you get the program going with leaning factor 0, you can try a different leaning factor, say 15, and see what it
looks like.

The arms should be attached at the top right and top left of the square that makes up the body. The tops of the arms should be
parallel to the top line of the square.

In writing the code that draws these rectangles, use the variables that are defined at the top of method . Also, use variables
to contain all the constants that you need, as we did in method . You may have to move the whole figure to the right (by
changing the value of variable) so that you can see the whole picture. You must use class ; you may not use
method in class .

paint

paint

x Parallelogram

drawRect Graphics

Hint: to figure out the coordinates for the arms, look at the positioning of the green square.

When you are finished, write on your paper the sequence of statements that you added to method . paint

