
CS100J About Prelim II (Thursday evening, 17 March, 7:30--9:00PM)

You should know everything that you needed to know for the first test --we review this material below. The new material since
prelim 1 consists of these topics. You should know this material thoroughly:

. Know how to execute a while loop. We will give you a precondition, postcondition, and loop invariant, and
you will have to develop the loop plus initialization from it. Be able to work with assertions and loop invariants, as done in class
since 3 March. p. 233--253.

1. While loops

s. Study pp. 148--155. Know how to write a
function equals. See the discussion at the very end of this document!
2. Apparent and real types, casting, operator instanceof, and function equal

. Be able to use class Vector. On any question about Vector, we will specify any methods of class Vector that
you need to answer the question --you don't have to memorize them.
3. Class Vector

s (as we have been doing in several labs, now).4. Ability to write function

. Know the following terms, backward and forward. Wishywashy definitions will not get much credit. Learn these
not by reading but by practicing writing them down, or have a friend ask you these and repeat them out loud. You should be
able to write programs that use the concepts defined below, and you should be able to draw folders and frames for calls.

Definitions

: a name with associated value OR A named box that can contain a value of some type or class. For a type like , the
value is an integer. For a class, it is the name of (or reference to) an instance of the class —the name that appears on the folder.
Variable int

: a definition of the name of the variable and the type or class of value it can contain. Basic syntax:
;

Declaration of a variable
type variable-name

: parameter, local variable, instance variable(or field), static variable (or class variables).Four kinds of variables

: A variable that is declared within the parentheses of a method header. The variable is drawn in a frame for a call on
the method --at the time the frame is created.
Parameter

: A variable that is declared in the body of the method. The variable is drawn in a frame for a call on the method
--at the time the frame is created.
Local variable

: A variable that is declared in a class without modifier static. An instance variable is drawn in every folder of
the class.
Instance variable

: A variable that is declared in a class with modifier static. An static variable is placed in the file drawer for the
class in which it is declared --when program execution starts.
Static variable

: procedure, function, constructor:Three kinds of methods

 has keyword before the procedure name. A procedure call is a statement.A procedure definition void

 has the result type in place of void. A function call is an expression, whose value is the value returned by
the function.
A function definition

 has neither keyword nor a type, and its name is the same as the name of the class in which it
appears. The constructor call is a statement, whose purpose is to initialize (some of) the fields of a newly created folder.
A constructor definition void

: An expression that occurs within the parentheses of a method call (arguments are spearated by commas).Argument

. An entity that is drawn like a manila folder. It has a name or label on
its tab. Its contents are the instance methods and instance fields defined in the class definition.
Folder (manila folder, object, or instance) of a class

. An expression of the form class-name (arguments). It is evaluated as follows: (1) create a new folder of
class class-name and put it in class-name's file drawer. (2) Execute the constructor call class-name (arguments); where the
method called is one that appears in the newly created folder. (3) Yield as the result of the new-expression the name of the
folder created in step (1).

New-expression new

. The frame for a method call contains: (1) the name of the method and the program counter, in a box
in the upper left, (2) the scope box (see below), (3) the local variables of the method, (4) the parameters of the method.
Frame for a method call

 for a call contains: For a static method: the name of the class in which the method appears. For an instance
method: the name of the folder in which the instance appears.
The scope box

:To execute a method call

1. Draw a frame for the call
2. Assign the (values of) the arguments to the parameters..
3. Execute the method body. When a name is used, look for it in the frame for the call. If it is not there, look in the
place given by the scope box.
4. Erase the frame for the call.

. We assume you can draw a folder, or instance of a class. For subclasses, remember that the folder has more than one
partition. Look at the homework we had on drawing folders.
Folder

. Every class that does not explicitly extend another subclass automatically extends class Object. Class Object has at
least two instance methods: toString and equals.
Class Object

. In one constructor, the first statement can be a call on another constructor in the same
class (use keyword instead of the class-name) or a call on a constructor of the superclass (use keyword instead of the
class-name).

Calling one constructor from another
this super

. A subclass inherits all the components (fields and methods) of its superclass.Inheriting methods and fields

. In a subclass, one can redefine a method that was defined in a superclass. This is called overriding the
method. In general, the overriding method is called. To call the overriden methodm (say) of the superclass, use
the notation .m(...) --this can only be done in methods of the subclass.

Overriding a method

super

. A variable x defined using, say, CLAS x; has apparent class CLAS. The apparent class is used in
determine whether a reference to a field or method is syntacticly legal or not. One can write x.m(...), for example, if and only if
method m is declared or is referenceable in class CLAS. The real class of x is the class of an object that is in x. It could be a
subclass. If x.m(...) is legal, then it calls the method that is accessible in the real class, not the apparent class. P. 148–154.

Real and apparent class

. Just as one can cast an i to another type, using, say, () i or () i, one can cast a variable of some class-
type variable to a superclass or subclass. Look in PLive to see about this. See p. 152–154.
Casting int byte double

. ob C has the value of "object ob is an instance of class C". p. 152--153.Operator instanceof instanceof

. Suppose this instance function occurs in class C. This boolean function returns the value of "ob is
not null, is the name of an object of class C, and is equal to this object". What "equal to this object" means depends on the
writer of the method and should be specified in a comment before the function. In class Object, it means "this object and ob are
the same object". Generally, when one writes such an equals(Object ob) function, "equal to this object" means "the fields of this
object and object ob are equal".See p. 154. Method equals on p. 154 is written incorrectly, because e has to be cast to Employee
in order to reference the fields. It should be:

Function equals(Object ob)

/** = "e is an Employee, with the same fields as this Employee */
 equals(Object e) {

 (e !=) ;
 (!(e Employee))
 Employee ec= (Employee) e;
 name == ec.name && start == ec.start && salary == ec.salary;
}

public boolean
if null return false
if instanceof return false;

return

