Program 3: Friendship Database

CS100J Fall 2002

Due in Lecture, Thursday, October 3

1. Overview and Goals

In this assignment, you implement an interactive database that contains information about people: their names, sex, and friends. Users enter new information and make queries by typing commands.

The program will be written in an object-oriented style (using classes, objects, and methods). We provide some code, and you must complete the program by adding new code, some of which involves adapting the supplied code.

2. Input
The input consists of zero or more commands (other than command q) followed by command q. The commands are:

b name

If there is not already an existing person named name, create a new b(oy) named name; otherwise print an appropriate error message.

g name

If there is not already an existing person named name, create a new g(irl) named name; otherwise print an appropriate error message.

f name1 name2
If name1 and name2 are people who already exist, and name1 has no more than one friend, and name1 is not name2, record the fact that name1 considers name2 a f(riend); otherwise, print an appropriate error message.
u name1 name2
If name1 and name2 are people who already exist, and name1 considers name2 a friend, remove any record of that fact; otherwise print an appropriate error message.
? name
If there is a person named name, display current information about that person; otherwise print an appropriate error message

p
List information about the entire p(opulation) in the database.

q
q(uit).

Assume that the input is well formed, i.e., commands have appropriate numbers of parameters. The notion of “appropriate error message” is illustrated by the example in the Section 4, Sample Session.

3. Output
Information about a particular person in the database should be displayed all on one line. The output format for a person with two friends is

 name:n; sex: s; friends: f1 and f2
the output format for a person with one friend is

 name:n; sex: s; friend: f1
and the output format for a person with no friends is:

 name:n; sex: s; no friends

where each n, f1, or f2 is a name, and s is either “male” or “female”. Each command is prompted by the text "> ".

4. Sample Session

The database starts out empty. Here is a sample session:

> b tom

> g sue

> f tom sue

> f tom sue

ERROR: tom already considers sue a friend

> f tim bettysue

ERROR: No such person as tim

ERROR: No such person as bettysue

> b tim

> f tom tim

> b paul

> f tom paul

ERROR: tom already has two friends

> f sue tom

> p

name:tom; sex:male; friends: sue and tim

name:sue; sex:female; friend: tom

name:tim; sex:male; no friends

name:paul; sex:male; no friends

> f tim sue

> u tom tim

> u tom tim

ERROR: tom does not consider tim a friend

> f tim tim

ERROR: You can’t be your own friend

b sue

ERROR: There already is a person named sue

> p

name:tom; sex:male; friend: sue

name:sue; sex:female; friend: tom

name:tim; sex:male; friend: sue

name:paul; sex:male; no friends

> q

5. Program Structure

Your program must be implemented as two separate classes --- class Person and an application class Program3 that is a client of class Person. A specification is not merely a hint for how you might solve the problem; it is a requirement that must be followed.

5.1 Class Person
Class Specification

Class Person maintains a database of people. It does not output any error messages (except for "Person: too many."). Rather, it communicates with its client via return codes, and lets the client (which is in charge of the user interface) emit appropriate messages.
Class Person offers its clients exactly the public methods listed below, and no others. If you define any other auxiliary methods, they should be private. All fields of class Person, including any new fields that you add, should be private.
public Person(String s, Boolean m) Construct a Person with name s and maleness m, e.g., evaluation of expression

new Person("tom", true)

creates a male Person named "tom". The database can store records of up to 100 people. Each attempt to create more than 100 people is ignored and outputs the message "Person: too many.".
public static int numberOfPeople() Return the number of Person objects in the database.

public static Person intToPerson(int i) Return the ith Person to have been created in the database. Return null if there is no such Person.

public String toString() Return the string representation of a Person in the format defined in Section 3, Output.

public int newFriend(Person p) Return a non-zero integer error code if argument p is not valid for a Person; otherwise, make p the Person’s friend, and return 0.

public boolean removeFriend(Person p) Return false if p is not the Person's friend; otherwise make p no longer the Person's friend, and return true.

public String name() Return the name of a Person.

public boolean male() Return true if a Person is male and false otherwise.

Class Implementation

A partial implementation of class Person is given below.

Do not change either the constructor Person or the methods numberOfPeople and intToPerson. In fact, they use some Java that you are not expected to understand yet. However, you do not need to understand the implementation; it is sufficient just to understand the specifications. You will have to modify method toString.

import java.io.*;

public class Person

{

 // max # of people in database.

 private final static int maxN = 100;

 // folks[0..n] are people in database.

 private static Person[] folks =

 new Person[maxN];

 private static int n = 0;

 private String name; // person's name.

 private boolean male; // person's maleness.

// Construct Person named s of maleness m.

public Person(String s, boolean m)

 {

 name = s;

 male = m;

 if (n >= maxN)

System.out.println("Person: too many.");

 else {

folks[n] = this;

n++;

}

 }

 // # of people in database.

 public static int numberOfPeople()

 {

 return n;

 }

 // i-th Person in database.

 public static Person intToPerson(int i)

 {

 if (i < 0 || i >= n) return null;

 else return folks[i];

 }

 // string representation of a Person.

 public String toString()

 {

 String result;

 result = "name:"+ name + "; ";

 if (male)

 result = result + " sex:male;";

 else

 result = result + " sex:female;";

 return result;

 }

}

5.2 Class Program3

Class Specification

Class Program3 reads commands and processes them. At a minimum, it should contain the following methods:

public static void main() Process all commands.

public static void showPeople() Display every person in the database.

public static Person stringToPerson(String name) Return a reference to the Person named name, or null if there is no such person.

public static boolean personExists(String name) Return true if a Person named s already exists, false otherwise.

However, you should define other methods, as necessary, to avoid writing redundant and duplicate code.

6. Developing the Program in Parts
Although it is a good idea to think through the program thoroughly before sitting down at a computer, it is an equally good idea to enter the program into the computer a little at a time, and test each little bit thoroughly before moving on. Careful incremental testing will save you time. Although it is tempting to enter a lot of code all at once, this is not a win because it makes it harder to track down errors since you must deal with more untested code. You are urged to enter and test your program a little at a time. Although you are free to break the problem into whatever steps you would like, we suggest the following:

Step 0. Create a project using the Java Application stationery. Rename class TrivialApplication to Program3, and set the CodeWarrior target accordingly. Run the program to confirm that you have set the target correctly.

Step 1. Copy the initial implementation of class Person into a file named Person.java and include it in your project. Let the body of the main of Program3 be

System.out.println(new Person("tom", true));

Run the program, which should output

name:tom; sex:male;

See the discussion on toString below if you don't understand why this code should produce the given output.

Step 2. Implement a static method showPeople() in class Program3 that prints out a line for each Person object. Change the body of Program3’s main to:

new Person("tom", true);

new Person("sue", false);

showPeople();
Compile and run the program, which should output

name:tom; sex:male;

name:sue; sex:female;
Step 3. Implement the application’s command loop, and commands b, g, p, and q. For this step, ignore the possibility of errors, e.g., assume no name is given twice. You should now be able to support the following sample session:

> b tom

> g sue

> p

name:tom; sex:male;

name:sue; sex:female;

> q

Step 4. Implement a method name()to provide read-only access to the private name field of a Person object.

Then implement method StringToPerson in your Program3 application class (not in class Person) that returns a reference to a named person. This method must search through the database to find a person with a given name. Assume that all names in the database are unique. Use method numberOfPeople to know how many people there are in the database, and method intToPerson(i) to obtain a reference to the ith person in the database.

Then use stringToPerson to implement command ?.

Step 5. Implement method personExists and use it to add error checking for the b and g commands.

Step 6. Implement the remaining commands.

7. Useful Facts

· Method readString() of class TokenReader reads the next word of the input, and returns it as a String.
· Let s and t be two String expressions. The boolean expression s.equals(t) is true if s and t are the same sequence of letters, and is false otherwise. In contrast, the boolean expression s==t is true if and only if s and t both refer to the same String object.
· Method System.out.flush() forces the display of a partial line of output, e.g., “> ”.
· Every object has a public method toString() for converting it to a String. For example, if p is a variable containing a reference to an object, then System.out.println(p); is a legal statement: Java automatically calls p.toString() to get the string representation of p to print without your mentioning toString explicitly. If there is no definition of a public method toString(), some default text is printed.

It is good practice for each class to define an appropriate version of toString() for displaying its objects. The initial version of class Person has a definition of toString() that you should extend as you change the class.

8. What To Hand In
· A printout of the final version of the two classes.

· A printout of a sample session that demonstrates the correctness of your implementation.

Programs are due at the end of lecture on the day given above. No late assignments will be accepted. Programs will not be accepted in Carpenter on the day they are due, but you may hand in your program to a consultant in Carpenter until the close of business the day before the program is due. You must give the program to a consultant personally. Do not just leave it on a desk.

Program listings must be printed. Output must be printed and be exactly as produced by the program handed in. All printouts must be separate pages, without perforated edges, and stapled together in order with a cover page obtained from the web. The first comment in the program must contain your (and your partner's) name, Cornell ID#, section's day & time & instructor, and the assignment number. These cannot be written in by hand. You (both) must sign the first page of the program.

1

