Program 7 – CS 100J Fall 2002
Due in Lecture, Thursday, December 5

Part A: Friendship Database, continued

1. Application

We have decided to have some parties to celebrate the end of the semester. We would like to keep the parties as small and intimate as possible, but want to make sure that everyone has a chance to have up to two friends at the same party as he or she attends. One of the attendees of each party is chosen arbitrarily as the host of that party. Your job is to extend the Friendship Database developed for Program 3 so that it implements the new command:

a

List the entire database population (exactly like the p command), but after each person (on a separate line preceded by a tab) print the host of the party that the person will attend.
2. Goal

This is a simple assignment in which you gain some (limited) experience using inheritance. You also get to use a class called UnionFind, which has widespread application.

2. Input and Output

The input and output of this program are the same as Program 3, with the addition of the command “a”.

4. Sample Session

> b tom

> g sue

> f tom sue

> b tim

> f sue tim

> b paul

> g randy

> f randy paul

> a

name:tom; sex:male; friend: sue

Host: name:tom; sex:male; friend: sue

name:sue; sex:female; friend: tim

Host: name:tom; sex:male; friend: sue

name:tim; sex:male; no friends

Host: name:tom; sex:male; friend: sue

name:paul; sex:male; no friends

Host: Name:randy; sex:female; friend:paul

Name:randy; sex:female; friend:paul

Host: Name:randy; sex:female; friend:paul

> q

5. Program Structure

Start with the sample solution to Program 3 that is posted to the web. Incorporate the file UnionFind.jav in the project, and then implement the program by extending the client code Program3 to implement the new “a” command. You should not make any changes whatsoever to UnionFind.java. Make only the very slight changes to Person.jav that are described below.

5.1 Class Person

Class Specification

Change class Person so that it is a subclass of class UnionFind. Provide the following access methods to the friend1 and friend2 fields, which are private:

public Person friend1() Return the first friend of a Person.

public Person friend2() Return the second friend of a Person.

5.2 Class UnionFind

The class UnionFind (provided on the web) supports the representation and merging of a collection of disjoint sets of objects. Each set of objects has a representative, an arbitrarily chosen member of the set. Given a UnionFind object p, you can find out the representative of the set currently associated with p by invoking p.find(). Given two UnionFind objects p and q, you can merge the sets associated with p and q by invoking p.union(q). You can make each UnionFind object an element of its own singleton set by invoking initializeUnionFind() on each and every UnionFind object.

Class Specification

// (Re)Initialize this object for use by UnionFind

public void initializeUnionFind()

// Merge the set associated with this and

// the set associated with q.

public void union(UnionFind q)

// Return the representative of the set associated

// with this.

public UnionFind find()
6. Hint

All you have to do to compute the desired parties is to initialize every person to be his or her own party, and then merge the parties of each person with the person’s friends.

7. What To Hand In

· A printout of the final version of the two classes Program3 and Person.

· A printout of a sample session that demonstrates the correctness of your implementation.

Programs are due at the end of lecture on the day given above. No late assignments will be accepted. Programs will not be accepted in Carpenter on the day they are due, but you may hand in your program to a consultant in Carpenter until the close of business the day before the program is due. You must give the program to a consultant personally. Do not just leave it on a desk.

Program listings must be printed. Output must be printed and be exactly as produced by the program handed in. All printouts must be separate pages, without perforated edges, and stapled together in order with a cover page obtained from the web. The first comment in the program must contain your (and your partner's) name, Cornell ID#, section's day & time & instructor, and the assignment number. These cannot be written in by hand. You (both) must sign the first page of the program.

PART B – Matlab Practice

Problem Statement

The goal of this part of the assignment is to help you practice writing MatLab programs.

Setting. The ratio of the circumference of a circle to its diameter is pi (π). What is the value of π?

Your goal is to estimate the value of π in two different ways.

Each method has an associated parameter N. In general, the bigger the value of N the better the approximation. For each method, write a function with one integer argument N that returns a 1-by-N matrix containing the successive approximations to π. Name the functions SeriesA and SeriesB.

Series A. Leibniz (1646 - 1716) gave the following infinite series for π.

π / 4 = 1/1 - 1/3 + 1/5 - 1/7 + 1/9 ...

Here, N is simply the number of terms in the approximation. So, for N = 3, the approximation is
4*(1/1 - 1/3 + 1/5).

Series B.

[π /6] = [sqrt(1/3)] * [1/(3^0 * 1) -

1/(3^1 * 3) + 1/(3^2 * 5) -

1/ (3^3 * 7) + 1/ (3^4 * 9) - ...]

N is again the number of terms.

What to turn in.

A printout of each of the two functions.

A printout of a main procedure that produces a plot of SeriesA vs. N and SeriesB vs. N (on the same printout) and a hardcopy plot of the result of this comparison.

Develop and test each function, one at a time, using small values of N. For your printout, use whatever value of N you consider appropriate.

Restrictions.

The main point of this part of the assignment is to learn how to use MatLab's uniform operations on matrices. In other words, your functions should not have loops that iterate N times.

1

