CS100J
SAMPLE FINAL EXAMINATION
FALL 2002

Question 1 (9 points). For each of the three program segments given below:

· Give the output of the program segment when it is run with n=5 as input data.

For each segment, assume variable in has been declared so that expression in.readInt() inputs one integer value.

Segment 1:

int n = in.readInt();

int sum = 0;

for (int j=1; j <= n; j++) sum = sum + j;

System.out.println (sum);

Output (for input n=5): __________
Segment 2:

int n = in.readInt();

int k = 0;

while (n != 0)

{

n = n / 2;

k++;

}

System.out.println(k);

This table is for your convenience; you may wish to use it for tracing the values of the variables. It is not part of the answer.

	n
	5
	
	
	
	
	

	k
	0
	
	
	
	
	

Output (for input n=5): __________
Segment 3:

int n = in.readInt();

for (int j=1; j <= n; j++)

{

for (int k=1; k < Math.min(j,3); k++)

System.out.println("*");

System.out.println();

}

Output (for input n=5):
Question 2 (7 points). [Input/output, maintaining history] For the purpose of this question, we say

· A pair of integers is "good" if one or both integers is positive.

· A pair of integers is "bad" if it is not "good".

(a) Fill in the blanks below to complete the code segment to read a sequence of integers and print the first bad pair of consecutive integers.

Note: In filling in the blanks, you must be consistent with the comments. In particular, you MUST NOT use the not operator (!).

TokenReader in = new TokenReader(System.in);

int previous = ____________________________________; // previous input number

int current = ____________________________________; // current input number

while (__) { // Note: ! IS DISALLOWED

 __________ = __;

 __________ = __;

}

System.out.println(___);

(b) What would the loop condition be if we wanted to print the first good pair of consecutive integers?

 __ // Note: ! IS DISALLOWED

Question 3 (5 points). [Iteration] Fill in the blanks below to complete the code segment to print whether integer p, p>1, is a prime number. That is, print an appropriate message like "51 is not prime" or "101 is prime".

(Recall that a number p>1 is prime if its only divisors are 1 and p. Recall that d is a divisor of p if the remainder is 0 when p is divided by d.)

TokenReader in = new TokenReader(System.in);

int p = in.readInt();

// Let d be the smallest divisor of p greater than 1.

 int d = __________ ;

 while (____________________)

 d = _____________ ;

if (__________)

 System.out.println(______________________________);

else

 System.out.println(______________________________);

Question 4 (10 points). [One-dimensional array] Method swap(A,k) exchanges two sections of a one-dimensional array A of integers. The length of the first section is given by the integer parameter k. For example, calling swap(A,5) will exchange the first 5 elements of A with the remaining elements:

 1 2 3 4 5 16 17 18 [original array A]
 16 17 18 1 2 3 4 5 [array A after swap(A,5)]
Recall from lecture and recitation that you can swap two sections of an array by using multiple calls of method reflect, which reverses the order of the elements in a section of an array.

Complete the code below. Your code must use calls of method reflect to do the swap.

// Reverse the order of the elements in A[start] through A[end].

public static void reflect(int[] A, int start, int end) {

 while (________________________) {

// Swap A[start] with a[end]

 int tmp = _____________;

 _______ = _____________;

 _______ = _____________;

// Adjust indices

 start++;

 end--;

 }

}

// Swap first k elements of array A[] with the remaining elements

// in A[]. No need to check bounds, i.e., k is reasonable.

public static void swap(int A[], int k)

{

}

Question 5 (7 points). [Two-dimensional array; subscripts] Fill in the box below with an expression (not a sequence of statements) to complete the code for method CheckMove. The parameters of CheckMove are:

· map, a ragged 2-D array of integers. By "ragged", we "not necessarily rectaqngular".

· r and c, coordinates of a (possible) cell in map.

· val, an integer value.

The method checks whether map contains a cell at row r, column c, and if so, whether it has a value that is one higher than val, and returns a Boolean value accordingly. Assume that the map does NOT have a boundary of sentinel values, and that subscripts r and c are not necessarily in bound, i.e., there may not be a cell map[r][c].

// Check whether cell r,c is within the boundaries of the map

// and its value is 1 higher than val

public boolean CheckMove(int[][] map, int r, int c, int val) {

 return

 ;

}

Question 6 (10 points). [Two-dimensional array] Write a function that calculates and returns the sum of all elements on and below the "main diagonal" of a rectangular matrix. Each rectangular matrix has one main diagonal. In the following examples, the elements on the main diagonal are labeled D. The elements below the main diagonal are labeled x.
 D o o o
 D o o o

D o o o o o

 x D o o
 x D o o

x D o o o o

 x x D o
 x x D o

x x D o o o

 x x x D
 x x x D

x x x D o o

 x x x x

 x x x x

Fill in the blanks and the box below to complete method sub_diagonal. Use the variables already declared and do not declare any new ones. Assume the convention that array M is structured in row-major order.
// Calculate the sum of the elements on and below the main diagonal

// of rectangular matrix M.

public static int sub_diagonal(int[][] M) {

 int height = ___________________; // no. of rows of matrix

 int width = ____________________; // no. of columns of matrix

 int sum = 0; // current sum

 int row, col;

 // indices for row, column

 // Sum the elements on and below the main diagonal column by column

}

Question 7 (15 points). [Inheritance, private/public/protected access, static vs. non-static, overloaded constructors.] Below are two classes, One and Two (a subclass of One), and a main() method of a client that uses them. Lines that may potentially contain errors are marked with a comment of the form:

// 1. Correct [] Incorrect []

Your task is to decide which lines are correct and which ones are incorrect. There are some incorrect lines, but there are more correct lines than incorrect ones. Do this by marking an "X" in the appropriate box. One point will be deducted for each empty row.

class One {

 private int a=1;

 protected int b=2;

 public int c=3;

 public One() {}

 public One(int f1, int f2, int f3) {

 a=f1; b=f2; c=f3;

 }

 private void Method1() {}

 protected void Method2() {}

 public void Method3() {
 a++; // 1. Correct [] Incorrect []

 Method1(); // 2. Correct [] Incorrect []

 }

}

class Two extends One {

 private int d=4;

 public static int e=5;

 public Two() {}

 public Two(int f1, int f2, int f3, int f4) {

 super(f1, f2, f3);

 d=f4;

 }

 public void Method4() {

 a++; // 3. Correct [] Incorrect []

 Method2(); // 4. Correct [] Incorrect []

 Method1(); // 5. Correct [] Incorrect []

 c++; // 6. Correct [] Incorrect []

 }

 public static void Method5() {

 c++; // 7. Correct [] Incorrect []

 }

}

// Continued on next page

public class Inheritance {

 public static void main(String[] args) {

 One obj1x, obj1y;

 Two obj2x, obj2y;

 int n;

 obj1x=new One();

 obj2x=new Two();

 n=obj1x.c; // 8. Correct [] Incorrect []

 obj1x.Method3(); // 9. Correct [] Incorrect []

 n=obj1x.a; // 10. Correct [] Incorrect []

 n=obj2x.c; // 11. Correct [] Incorrect []

 n=Two.e; // 12. Correct [] Incorrect []

 n=obj2x.e; // 13. Correct [] Incorrect []

 obj2y= new Two(43, 23, 65); // 14. Correct [] Incorrect []

 obj1y= new One(3, 5, 6); // 15. Correct [] Incorrect []

 }

}

Question 8 (12 points). [Classes, subclasses, inheritance] (Note this was a repeat of a question asked during the semester.]

(a) Fill in the blanks to complete the code for class Person. For one Person to bilaterally interact with another Person, each unilaterally interacts with the other. For one Person to unilaterally interact with another Person:

· The (original) person rolls his/her own dice to obtain a number from 0 to his/her own friendliness (inclusive).

· If the dice comes up 0, then the other Person becomes his/her latest enemy, otherwise his/her enemy is unchanged.

class Person {

 private String name;

 protected int friendliness;

 public Person enemy;

 // Constructor

 public Person(String n, int f) {

 name = n; friendliness = f; enemy = null;

 }

 // return description (name, friendliness, name of enemy)

 public String toString() {

 String s = name + " has friendliness " + friendliness + " and ";

 if (enemy == null) return s + "no enemy";

 else return s + "enemy + " enemy.name;

 }

 // bilaterally interact with Person p

 public void interact(Person p) {

 __;

 __;

 }

 // unilaterally interact with Person p

 public void uniInteract(Person p) {

 if (0 == (int)(Math.random()*(1 + friendliness)))

 ___ ;

 }

}

[Part (b) on next page.]

(b) Write a subclass WackyPerson of Person.

It must have a constructor WackyPerson(n) that for a new instance, sets the name to n, friendliness to 2000, and enemy to itself (the new instance).

When a WackyPerson unilaterally interacts with another Person (or WackyPerson), it repeatedly does what a Person would normally do a 100 times. (That is: roll, decide; roll, decide; roll, decide; etc. for a total of 100 times.)

Use good style.

class __ {

 // constructor: set name to n, friendliness to 2000, enemy to self

 ____________________ (____________________) {

 ___ ;

 ___ ;

 }

 // unilaterally interact: do 100 times what a Person would do

 public void uniInteract(Person q) {

 for (________________; ________________ ; ________________)

 __ ;

 }

}

Question 9 (10 points). [MatLab] Write MatLab code for each of the following problems:

(a) Assume that a 2-dimensional matrix M already exists and has at least 4 columns and rows. Write MatLab code to assign to variable N the submatrix of M excluding the border. The border of M is its first and last rows and its first and last columns.

(b) Write a MatLab function COUNT that accepts a vector V and a scalar value X as input and returns the number of occurrences of X in V.

· Do not use loops, be concise

· Use good style (use a comment to explain the function)

(c) Write MatLab code that calls the function COUNT to find the number of occurrences of the value 99 in the second column of matrix N (from part (a)). Recall that matrix N has at least two columns.

1

