CS100J
PRELIM 3
FALL 2002

Name ___

Q1 ____ of 25
 Last, First Middle
[Please print legibly]

Q2 ____ of 40
ID # __

Q3 ____ of 35

Signature __

 TOTAL ______ of 100
Section (circle one):
	1
	M 1:25-2:15
	A.J.Byrd

	2
	M 2:30-3:20
	Jay Henniger

	3
	M 3:35-4:25
	Jay Henniger

	4
	T 10:10-11:00
	Oren Kurland

	5
	T 2:30-3:20
	Joy Zhang

	6
	T 3:35-4:25
	Joy Zhang

	7
	T 1:25-2:15
	Oren Kurland

Instructions. This is a 1.5-hour, closed book exam. There are 3 questions worth a total of 100 points. Be sure that your packet contains all 3 questions and the pages are in order. Write all answers in this packet. Answers will be graded on whether they are correct, and on whether they are legible and written in a clear style. Comment your code where appropriate, but not excessively. Small syntactic and punctuation errors will not be heavily penalized. Concentrate on problem solving and presenting your solutions clearly.

You must use the code templates as provided, and may not alter or delete the code provided. You may not write outside of the boxes and blanks, and you may not alter the structure of the given code templates. Correct solutions may have empty boxes.

Don’t be alarmed if you don’t have to write much code in a box or blank for an answer, or if you need much less than 1.5 hours to complete the exam. You may leave after a half hour, but not before.

Question 1 (25 points) Class ML is the implementation of MatLab in Java from lectures 20-22. Complete the implementation of the ML method reflect, which returns a new matrix (an object of class ML) of the same size as the matrix on which it was invoked, but with the values reflected about a vertical axis centered in the middle of the matrix. For example:

M

	17
	24
	1
	8
	2

	23
	5
	7
	14
	3

	4
	6
	13
	20
	9

M.reflect()

	2
	8
	1
	24
	17

	3
	14
	7
	5
	23

	9
	20
	13
	6
	4

It is OK for the result to refer to the same ml values as the original matrix.

public class ML

{

private int h;

// height of matrix

private int w;

// width of matrix

private ml[][]values;
// elements of matrix

// Construct an h-by-w uninitialized matrix.

private ML(int h, int w)

 {

if (h <= 0 || w <= 0)

{

this.h = 0; this.w = w;

values = new ml[0][0];

}

else

{

this.h = h; this.w = w;

values = new ml[h][w];

}

 }

// continued on next page…

// Return a new matrix consisting the values of this matrix reflected about

// a vertical axis.

public ML reflect()

{

}

} // end class ML

Question 2 (40 points) Recall that in Java, a 2-dimensional array is a 1-dimensional array of references to 1-dimensional arrays, so “ragged” 2-dimensional arrays are possible. Let n be a positive integer, and let B be a two-dimensional int array consisting of n rows of positive, but not necessarily equal, length. First determine m, a value that occurs in the 0th column of B with minimal frequency. (Break ties arbitrarily.) Then replace each row of B in which m occurs in the 0th column of the row by a one-shorter row in which the initial value m has been deleted.

For example, suppose n = 4, and the original B is

	10
	5
	20
	3
	20

	40
	17
	13
	
	

	10
	20
	30
	30
	10

	40
	7
	
	
	

Then both 10 and 40 are candidates for a minimal-frequency value. If m=40 is chosen, then a final value of B would be

	10
	5
	20
	3
	20

	17
	13
	
	
	

	10
	20
	30
	30
	10

	7
	
	
	
	

// continued on next page…

// Let m be a value with minimal frequency in the 0th column of B.

// Let list[0..d-1] be the d distinct values that occur in the 0th column of B, and

// freq[0..d-1] be their corresponding frequencies.

 int [] list = new int [n];

 int [] freq = new int [n];

 int d = 0;

// # of distinct values in column 0.

 int m;

// a minimal value in column 0.

 for (int r = 0; r < n; r++){

// Let k be the location of B[r][0] in list[0..d-1], if it occurs in

// list[0..d-1], or d if it doesn’t occur in list[0..d-1].

int k = 0;

if (k == d)

else

 }

// Let minLoc be the index of a smallest value in freq[0..d-1].

int minLoc = 0;

m = __________________;

// Replace each row of B in which m occurs in the 0th column by a one-shorter row in which

// the initial value of m has been deleted.

 for (int r = 0; r < n; r++){

 }

Question 3 (35 points) Let M be a square array whose integer elements represent the minimum distances of a robot, located at coordinates (startRow, startCol), from each cell, where

· the robot can only move horizontally or vertically on each step,

· the robot must avoid known rocks, which are represented by cells containing the value –1,

· M contains an outer ring of rocks,

· the robot is located inside the outer ring of rocks, and

· the cells that the robot cannot reach are modeled as –2.

For example,

M

	-1
	-1
	-1
	-1
	-1
	-1
	-1

	-1
	-2
	-1
	6
	5
	6
	-1

	-1
	-1
	6
	5
	4
	-1
	-1

	-1
	-1
	-1
	4
	3
	2
	-1

	-1
	-2
	-1
	5
	-1
	1
	-1

	-1
	-2
	-2
	-1
	1
	0
	-1

	-1
	-1
	-1
	-1
	-1
	-1
	-1

represents the distances of various cells from a robot located at (startRow,startCol) = (5,5).

Complete method path such that, for a given array M with robot starting location (startRow, startCol), and desired ending location (endRow, endCol), it returns a 2-by-n int array representing the coordinates of a path P from the robot’s starting location to the desired ending location. The 0th row of P contains the row coordinates of the cells along the path, and the 1st row of P contains the column coordinates of the cells along the path. The 0th column of P contains the coordinates (startRow,startCol) and the last column (column n-1) contains the coordinates of the desired ending location (endRow,endCol).

For the example above, a possible return value for method invocation path(M,5,5,2,3) would be:

	5
	4
	3
	3
	3
	2

	5
	5
	5
	4
	3
	3

and a possible return value for method invocation path(M,5,5,5,5) would be:

	5

	5

If no such path is possible, method path returns a 2-by-0 int array.

// continued on next page…

// Return a path from <startRow,startCol> to <endRow,endCol>,

// or a 2-by-0 array if no such path is possible.

public static int[][] path(

int[][] M,

// Map of distances from starting location.

int startRow, int startCol,
// Coordinates of starting location.

int endRow, int endCol

// Desired ending location.

) {

 int n = M[endRow][endCol] + 1;

 if (________________) return new int[2][0];

 int [] deltaRow = { 0, 1, 0, -1 };

 int [] deltaCol = { 1, 0, -1, 0 };

}
2 of 7

