CS100J
PRELIM 2
FALL 2002

Name ___

Q1 ____ of 30
 Last, First Middle
[Please print legibly]

Q2 ____ of 40
ID # __

Q3 ____ of 30

Signature __

TOTAL ______ of 100
Section (circle one):
	1
	M 1:25-2:15
	A.J.Byrd

	2
	M 2:30-3:20
	Jay Henniger

	3
	M 3:35-4:25
	Jay Henniger

	4
	T 10:10-11:00
	Oren Kurland

	5
	T 2:30-3:20
	Joy Zhang

	6
	T 3:35-4:25
	Joy Zhang

	7
	T 1:25-2:15
	Oren Kurland

Instructions. This is a 1.5-hour, closed book exam. There are 3 questions worth a total of 100 points. Be sure that your packet contains all 3 questions and the pages are in order. Write all answers in this packet. Answers will be graded on whether they are correct, and on whether they are legible and written in a clear style. Comment your code where appropriate, but not excessively. Small syntactic and punctuation errors will not be heavily penalized. Concentrate on problem solving and presenting your solutions clearly.

You must use the code templates as provided, and may not alter or delete the code provided. You may not write outside of the boxes and blanks, and you may not alter the structure of the given code templates. Correct solutions may have empty boxes.

Don’t be alarmed if you don’t have to write much code in a box or blank for an answer, or if you need much less than 1.5 hours to complete the exam. You may leave after a half hour, but not before.

 Question 1 (30 points). One or more people are arranged in a circle, holding hands. We represent each such person as an object of class Person, where each person object has two fields, left and right, that refer to the person in the circle immediately to the left and right, respectively. Complete the implementation of method nthNeighborToRight, which given n >= 0, returns the person who is n people to the right of a given person. For example, if people A, B, and C are in the circle

 C

then B is the 1st, 4th, 7th, etc. person to A’s right, C is the 2nd, 5th, 8th, etc. person to A’s right,

 / \

and A is the 0th, 3rd, 6th, etc. person to A’s right. To avoid going around the circle many times,

A (B

you should complete the definition of method numberInCircle, and use it.

If a person is alone in a circle, then that person is its own left and right neighbor.

class Person

{

private Person left;

// person to this person’s left

private Person right;
// person to this person’s right

// Some constructors and methods not shown.

// . . .

// return the number of people in the circle starting at an arbitrary person.

private int numberInCircle()

{

}

// Given n >= 0, return the Person who is n people to the right of this person.

public Person nthNeighborToRight(int n)

{

int d = numberInCircle();

int k;

// Let k be the number of steps to the right around a circle of size d that we must

// take to get to the nth person to the right without going around the circle more

// than once.

// Find the kth neighbor to the right of this person, and return it.

}

}

Question 2 (40 points). Complete the implementation of the class Dictionary according to its specification. A Dictionary consists of a list of index terms and their associated definitions. Both index terms and definitions are non-empty strings. There is no upper limit on the number of defined terms in a dictionary.

class Dictionary

{

// Dictionary representation

int currentSize = 0; // current number of defined terms in this dictionary.

// Current terms in dictionary are terms[0..currentSize-1] and their associated

// definitions are definitions[0..currentSize-1], respectively. The array terms[]

// is one larger than the array definitions[] to provide an extra cell for a

// sentinel, if desired. (The use of a sentinel is optional.)

private String [] terms = new String[2];

private String [] definitions = new String[1];

// Roughly double the lengths of this.terms[] and this.definitions[], while preserving

// the values in this.terms[0..currentSize-1] and this.definitions[0..currentSize-1].

private void stretch()

{

int maxSize = definitions.length;
// maxSize is the length of the current

// definitions array. terms array is one larger.

} // end stretch

// continued on next page

// Return the subscript of indexTerm in this.terms[0..currentSize-1],

// if it appears there, or return currentSize otherwise.

private int search(String indexTerm)

{

} // end search

// If the given indexTerm already appears in this dictionary, do nothing; otherwise

// insert it into this dictionary and associate it with the given definition.

public void insert(String indexTerm, String definition)

{

int k = search(indexTerm);

} // end insert

// If the given indexTerm appears in this dictionary, return its associated definition,

// otherwise return the empty string.

public String lookup(String indexTerm)

{

int k = search(indexTerm);

} // end lookup

} // end of Dictionary
Question 3 (30 points). Given a string s, it is often useful to compute another string that is equal to s with all occurrences of some substring pat replaced by some other substring new. Here are some examples:

	s
	Pat
	new
	result

	”(x+y)/(x-y)”
	”x”
	”z”
	”(z+y)/(z-y)”

	”(x+y)/(x-y)”
	”y”
	”foo”
	”(x+foo)/(x-foo)”

	”he is herman”
	”he”
	”she”
	”she is sherman”

	”he is herman”
	”her”
	””
	”he is man”

Complete the definition of the method substitute according to its specification.

Implementation idea. Build up the answer in t while deleting the part of s that has been processed. In particular, repeatedly find the leftmost occurrence of pat in s, append the relevant text to t, and remove the initial part of s that has been processed. For example, here is a trace of how most of the answer can be built up in t for the method invocation: substitute(”he is herman”, ”he”, ”she”);
	t
	S

	””
	”he is herman”

	”she”
	” is herman”

	”she is she”
	”rman”

Useful methods on strings. If s is an object of class String, then the following methods can be invoked on s:
s.indexOf(String pat) Return the position of the first occurrence of the string pat in s (if pat occurs in s at all), or –1 if pat is not found.

s.subString(int start, int end) Return the substring of s starting from position start through (but not including) position end.

// Return a string that is equal to the given string s with all occurrences of pat

//replaced by new.

public static String substitute(String s, String pat, String newS)

{

 String t = ””; // Result so far.

 int p;
 // Location of leftmost occurrence of pat in s, or –1 if none.

 p = ___;

 while (___)

 {

 t = ___;

 s = ___:

 p = ___;

 }

 return __;

}

5 of 5

