CS 100a
Prelim 2 — Review
Fall 98

Prelim 2 will cover what we have discussed since Prelim 1: loops, arrays, and type char. However, it will also include material covered by Prelim 1. In particular, be sure you know the definitions of terms used (e.g. parameter) and be able to tell us how to execute a method call and a statement x= new class-name(…); .

Below is a sample prelim 2 with the sample answers to the questions. There are often MANY correct solutions to loop questions; here we usually include only one solution for each question.

To conserve space, we allow very little room for your code in the program skeletons provided below. The actual exam, on the other hand, would leave ample room for you to add code in the proper places.

****NOTE***: We will post any errors, clarifications, etc. to this review sheet on the CS100a home page. Please check it before sending us questions about the review problems.

Sample Prelim #1

For each of the following questions, complete the given program skeleton. Note that statements marked _______ are incomplete. Feel free to add any local variables you may need, but remember to declare them of appropriate type. You do not have to add any fields, methods, or classes to the ones already given. You can assume that all fields are initialized with meaningful values. Arrays are filled completely. To get full credit, you should provide meaningful yet concise comments and neatly indent your code. Illegible code is non-existent code for grading purposes.

Problem 1 (Arrays — 20 points)

Write a method shiftLeft that shifts the elements of field letters , a character array, one position to the left. The element that is shifted out of the array should be placed into the position that is freed at the other end. Assume that letters contains at least one element.

Example: If letters equals [’a’,’b’,’c’,’d’,’e’] initially, then it should be equal to [’b’,’c’,’d’,’e’,’a’] after your method finishes.

Good programs use as little memory as possible. To get full credit, design your method shiftLeft without the use of an additional array.

public class ArrayShift {

private char[] letters; // non-empty array of characters to be shifted

// Shift chars in letters one position to the left (put first in last pos.)

public void shiftLeft() {

}

Problem 2 (Inheritance — 20 points)

Complete the skeletons for classes Vehicle and SailingShip. SailingShip should inherit fields and methods from Vehicle. For class Vehicle, write a constructor that initializes field speed with the value of its parameter. Add a method timeNeeded that takes a distance in miles and returns the time in hours needed to travel that distance at the vehicle’s speed.

For class SailingShip, write a constructor method that takes a speed in miles per hour and a number of rations available and initializes the fields with these values. One ration unit provides food for all the crew for one day. Add a method rationsNeeded that takes a distance in miles and returns the number of rations consumed while traveling that distance at the ship’s speed. Finally, write a method that takes a distance in miles and returns true if there are enough rations on board to travel that distance and returns false otherwise.

Note that speed is declared private in class Vehicle, and this may not be changed. You can assume that the speed and the number of rations available are always non-zero. Remember that there are 24 hours in a day.

public class Vehicle {

private double speed; // speed in miles per hour

public Vehicle (______________________________) {

}

public double timeNeeded (__________________________________) {

}

}
public class SailingShip _______________________________ {

private double rations; // number of daily rations available for crew

public SailingShip (__) {

}

public double rationsNeeded (___________________________) {

}

public boolean enoughRations (___________________________) {

}

}

Problem 3 (Loops — 20 points)

Write a public method countPairs that takes an array num of distinct integers (i.e. no integer occurs twice in the array) and returns how many pairs of elements of num add up to an even number.

Example: If num is equal to [1,4,7,2,-9], then your method should return 4, because 1+7, 1–9, 2+4, and 7–9, and only those, are even numbers. Note that an element cannot be a pair with itself, so 1+1 etc. must not be counted.
Problem 4 (Random Walk — 20 points)

Androids Trurl and Klapaucius are performing a random walk on a grid. Assume that they both begin at square (0,0). At each step they independently move one square to the right and one square up or down, e.g. from (0,0), an androids will move independently to either (1, 1) or (1, -1). Trurl’s probability of moving up is 60%, whereas Klapaucius’ probability of moving up is 45%.

Complete method main below to simulate 200 steps of their random walk. Count how many times they meet during their walk, i.e. how often they are standing on the same square. Output this number to the screen. Do not include their starting position in your count.

Hint: The random expression (Math.random() <= 0.4) will be true with probability 40%. Function Math.random() returns a random number between 0.0 and 1.0.

public static void main(String[] args) {

 // your code goes here

System.out.println("They met " + ____________________ + " times.");

}

Problem 5 (Arrays — 20 points)

Consider class SumGroups below. You are given an array num of 800 integers. Write a method groupEight that divides num into groups of eight, adds up the elements of each group, and stores the results in array sum. Assume that array num always contains 800 integers.

Example: If num equals [1,1,2,2,3,3,4,4,0,-1,0,-2,0,-3,0,-4,…], then sum should be equal to [20,-10,…], since the first group [1,1,2,2,3,3,4,4] adds up to 20, the second group [0,-1,0,-2,0,-3,0,-4] adds up to –10, and so on.

public class SumGroups {

public int[] num;
// array of 800 integers

public int[] sum = ____________________________; //____________________________

public void groupEight() {

}

}

Sample Solutions

Answer to Problem 1
public class ArrayShift {

private char[] letters; // non-empty array of characters to be shifted

// Shift chars in letters one position to the left (put first in last pos.)

public void shiftLeft() {

int i = 0;

char savedLetter = letters[0]; // char to be put ar right end of array

// invariant: positions 0..i-1 contain shifted elements

while (i < letters.length - 1) {

letters[i] = letters[i+1]; // move one character to the left

i = i + 1;

}

letters[letters.length - 1] = savedLetter; // fill vacancy at other end

}

}

Variations: Replace last line by letters[i] = savedLetter;

Answer to Problem A2

public class Vehicle {

private double speed; // speed in miles per hour

// create new vehicle with speed someSpeed (in mph)

public Vehicle (double someSpeed) {

speed = someSpeed;

}

// compute time needed to travel distance in miles

public double timeNeeded (double distance) {

return distance / speed;

}

}

public class SailingShip extends Vehicle {

private double rations; // number of daily rations available for crew

// construct new sailing ship with speed s in mph and

// amount r of daily rations

public SailingShip(double s, double r) {

super(s);

rations = r;

}

// calculate how many rations will be consumed while traveling

// distance d at given speed

public double rationsNeeded (double d) {

return timeNeeded (d) / 24; // one ration per 24 hours

}

// test whether rations are sufficient to travel distance d

public boolean enoughRations (double d) {

return rationsNeeded(d) <= rations;

}

}

Answer to Problem A3

// return number of pairs in num that add up to an even number

public int countPairs (int[] num)
{

int i, j;

int evenPairs = 0;
// result

i= 0;

// inv: evenPairs = no. of pairs who sum is even and whose first

// element is in num[0..i-1]

while (i < num.length) {

// Add to evenPairs the no. of pairs whose sum is even and whose

 // first element is i

j= i + 1;

// inv: num[j..] remain to be checked

while (j < num.length) {

if ((num[i] + num[j]) % 2 == 0)
// add up to even number?

evenPairs= evenPairs + 1; // increase result

j= j + 1;

}

i= i + 1;

}

return evenPairs;

 }

Answer to Problem A4

public static void main(String[] args) {

int steps= 0;

// number of steps done so far

int meetings= 0;
// number of meetings so far

int yTrurl= 0;
// y-coordinate of Trurl

int yKlapaucius= 0;
// y-coordinate of Klapaucius

// Invariant: definitions of four variables declared above

while (steps < 200) {

if (Math.random() <= 0.6) // move up with prob 60%

 yTrurl= yTrurl + 1;

else yTrurl= yTrurl - 1;

if (Math.random() <= 0.45) // move up with prob 45%

 yKlapaucius= yKlapaucius + 1;

else yKlapaucius= yKlapaucius - 1;

if (yTrurl == yKlapaucius) // are they standing on the same square?

meetings= meetings + 1;

steps= steps + 1;

}

System.out.println(”They met ” + meetings + ” times.”);

}

Note that we need not store Trurl’s and Klapaucius’ x-coordinates since they are always equal.

Variations:
In the first “if” statement, Math.random() < 0.6 or Math.random() >= 0.4 or Math.random() > 0.4 are also correct. Similar for second if statement.

Answer to Problem A5
public class SumGroups {

public int[] num;
// array of 800 integers

public int[] sum = new int[100]; // result will be 100 integers

// divide num in groups of 8 and sum them up, storing results in sum

public void groupEight() {

int i; // number of group

int j; // element index in each group

i= 0;

// invariant: sum[j] contains sum of num[8*j..8*j+7] for each j=0..i-1

while (i < 100) { // for each group of 8 ...

sum[i]= 0;

j= 0;

while (j < 8) { // sum up 8 consecutive elements of num

sum[i] = sum[i] + num[8*i+j];

j= j + 1;

}

i= i + 1;

}

}

}

Variations:

// initialize sum with 0

i= 0;

while (i < 100) {

sum[i]= 0;

i= i + 1;

}

// invariant: sum[0..7] contains correct sums for values num[0..i-1]

while (i < 800) { // for each element of num ...

sum[i/8]= sum[i/8] + num[i]; // add sum[i/8] to appropriate group

i= i + 1;

}

