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1 Exercises for 2021-04-29
Note: You will need to do import Pkg; Pkg.add("GraphRecipes") if you do not already have it
installed.

[ ]: # import Pkg; Pkg.add("GraphRecipes")

[ ]: using LinearAlgebra
using Plots
using GraphRecipes
using SparseArrays
using MatrixNetworks

1.1 Data setup
The Zachary karate club is a standard example in network analysis; for this and some other exam-
ples, see Mark Newman’s web site, the Network Repository, and the KONECT repository. Other
example repositories include SNAP and UCI.

[ ]: m = 78
n = 34
adj = [1 2
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http://www-personal.umich.edu/~mejn/netdata/
http://networkrepository.com/soc-karate.php
http://konect.cc/
https://snap.stanford.edu/snap/
http://networkdata.ics.uci.edu/
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labels = [0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1]
A = sparse(adj[:,1], adj[:,2], ones(m), n, n)
A = A+A'
spy(A)

[ ]: graphplot(A, markersize=0.4, curves=false, names=labels)

1.2 Semi-supervised labeling
Suppose we label node 1 as 0 and node 34 as 1.

(4 points): Compute the vector of “soft” labels using the Laplacian-based approach from the 4/22
lecture. Plot the soft labels vs the “ground truth” labels. Does this approach work well?

[ ]:

1.3 Spectral partitioning
This is a small enough matrix that we can just use the Julia eigen function. For larger matrices,
we would want to use eigs (which is now in the Arpack.jl package).

We start by plotting the labeling vs the first eigenvector of the combinatorial Laplacian. What we
notice is that this ordering does a pretty good job of separating the two “ground truth” clusters in
the graph.

[ ]: d = [sum(A[i,:]) for i = 1:n]
D = spdiagm(0 => d)
L = D-A
Ldense = Matrix(L)
�s, V = eigen(Ldense)
spectral1d = V[:,2]
scatter(spectral1d, labels')

(3 points): In your own words, explain what was meant by “does a pretty good job of separating
the two ‘ground truth’ clusters in the graph.”
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The spectral approximation to maximizing the modularity (defined in terms of B = A− ddT

2m involves
similarly looking at the eigenvector associated with the largest eigenvalue of B.

(3 points): Plot the “ground truth” labels against the components of this eigenvector – you should
see it again does a pretty good job of separating out the two pieces.

[ ]:

1.4 Students choice
Suppose you had to ask a question to gently probe students knowledge of the graph learning
methods discussed in the past two weeks.

(2 points): What question do you think you would ask?

(2 points): What would your answer to that question be?
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