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1 Centrality and ranking

For a given network, how important is any given node or edge? The answer
to this question depends a great deal on context. Do we care about the
immediate neighbors of a node (degree centrality), how close the node is to
other nodes (closeness centrality), or if a node sits in a cross roads for traffic
through the network (node between-ness centrality)? Do we care about the
edges that are most important in keeping a graph together (edge between-
ness centrality)? Do we want an egocentric measure that focuses on the graph
near a particular target node (personalized PageRank)? All these different
approaches lead to different — though sometimes related — measures of
centrality or importance of a node or edge.

When we think about computations involving centrality measures, we
care about a number of different aspects:

e Does a particular notion of centrality capture the notion of importance
that matters for our application? Does it make sense given how the
network is constructed?

o Is the measure stable, or can “small” changes to the network (for some
application-dependent notion of “small”) change it dramatically?

o (Can we efficiently compute the centrality for the types of graphs we care
about? If we are concerned with large graphs, we may seek a cheaper
approximate computation instead of an exact computation; how good
is the approximation?

In the rest of the lecture, we discuss these different aspects of centrality
computation for several different types of centrality.

2 Degree centrality

The simplest measure of centrality is (weighted) node degree. In a directed
graph, we distinguish between in-degree and out-degree. For example, in a
social network, we might declare someone to be famous if they have many
followers (a high in-degree). This measure is easy to compute, and it is easy
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to understand the stability to small changes in the network. Unfortunately,
the degree is also a very local property, and may miss network features that
matter a lot if we are concerned with the bigger picture. For example, a paper
in a citation network may be heavily cited by the author and his students;
but if nobody else cites the work of the group, it has little importance.

3 Spectral centrality measures

Many centrality measures are based on the idea of a balance or exchange
between neighboring nodes, and these centrality measures typically lead to
eigenvalue problems, usually involving non-negative matrices. A useful pre-
liminary to discussing these measures is the Perron-Frobenius theorem.

In the least restrictive case, the Perron-Frobenius theorem says that every
non-negative matrix has a positive real eigenvalue with absolute value at
least as great as that of any other eigenvalue, and there is an associated non-
negative eigenvector with some elementwise non-negative row and column
eigenvectors. We typically assume the non-negative matrix is irreducible
(i.e. it cannot be rewritten as a block upper triangular matrix); in this case,
this largest positive eigenvalue (the Perron-Frobenius eigenvalue) has both
algebraic and geometric multiplicity one and has associated positive row and
column eigenvectors. The Perron eigenvalue is bounded from above and
below by the largest and smallest column sums.

One of the simplest centrality measures is eigenvector centrality (also
known as Bonacich centrality). The idea of eigenvector centrality is that the
importance of a node is determined by whether it has important neighbors;
that is, if = is the vector of centralities, we want

1
€T; = X E aijxj,
J

or, in matrix form,

Az = \x.

The vector x is only determined up to a scaling factor; in this setting, we
often choose to enforce that the entries sum to one, i.e.

n
E x;=elx=1.
i=1
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Eigenvector centrality is correlated with degree centrality, but is more sen-
sitive to the overall shape of the network. Unfortunately, it may be rather
sensitive. For example, consider the graph consisting of two cliques con-
nected by a single edge. The eigenvector centrality in this case may change
enormously if we remove the edge in one direction.

The HITS algorithm generalizes the notion of eigenvector centrality to the
case where we have two complementary centralities: hubs and authorities. A
hub is important if it is points to important authorities, and an authority is
important if it points to important hubs. So if a;; denotes the weight from
7 to i, then the hub importance vector x and the authority vector y should
satisfy

y= Mz, z=ATy.

That is, x and y are the singular vectors associated with the largest singular
value of A.

If we scale the edge weights on the graph so that all nodes have weighted
out-degree one, we are left with the stationary distribution for a Markov
chain, i.e.

AD 'z = 1.

If the original graph was undirected, then d = Ae is the vector of node
degrees, and

AD 'd = Ae = d,

so the stationary distribution is proportional to the vector of node degrees
in the original graph. In this case, we recover degree centrality as a case
of eigenvector centrality. But even with this scaling, the two notions differ
when the graph is directed.

The eigenvector centrality vector, the stationary state of a random walk
on a graph, and the dominant singular pair for a graph can all be computed
by power iteration or by more rapidly convergent Krylov subspace iterations
(Lanczos and Arnoldi). However, convergence may be slow if another eigen-
value is close to the Perron eigenvalue, which may happen in networks that
exhibit strong clusters with weak connections between them. In this case, the
slow convergence relates to the fact that the solution may be rather sensitive
to small changes in the network.

The PageRank algorithm can be seen as a regularized version of comput-
ing the usual stationary distribution for a random walk on a graph. Rather
than the usual model of a random walker that transitions only along edges
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in a graph, we consider a random surfer who usually behaves like a walker,
but sometimes (with probability «) teleports to a new network location. The
PageRank vector is the stationary vector of

Prr = (1 — )P + amge’

where T is a reference distribution used for teleporting. The PageRank
vector x can either be written as the stationary vector for Ppg, i.e.

[(1—a)P+ amee’ |z =z,

T

or we can substitute the normalization condition e’z = 1 to get

[ — (1 —aP)]z = ames.

The PageRank iteration, which can be seen as a power method on Ppg or as
a simple linear solver (Richardson iteration) on the linear system, is

2" = (1 — o) Pz* + ame.
The iteration satisfies the error equation
2 =2y < (1= a)l|la" — 2|,

and so converges rapidly when « is far enough from one — a choice on the
order of 0.1 is typical. The iteration converges rapidly because there can be
no eigenvalue (other than the one at 1) with modulus greater than 1 — «;
this same fact guarantees that the solutions to the PageRank problem are
relatively insensitive to small changes in the transition probabilities.

4 Path-based centrality measures

Recall that if A is an adjacency matrix with entries a;; denoting the weight
of an edge from j to 7, then [A¥];; denotes the total of all length k paths from
j to i. Path-based centrality measures combine these counts to get summary
information about nodes in a graph. For example, the Katz centrality mea-
sure of a node ¢ is a weighted sum of the number of paths going through
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node i from any source, where the weight for paths of length k is o* for some
positive « sufficiently less than one. That is,

T = Z Z oA,

k=1 j=1

= [i ar Ake
k=1 i

v=([I—ad]™ =1)e.

Assuming « times the Perron eigenvalue of A is reasonably less than one, we
can compute the Katz vector by the iteration

2* = q A(2F +e).

Different choices of weights give different centrality measures; for example,
we could also consider

> k

T = Z %Ake = exp(ad)e.

An alternative is to consider not all paths in the network, but only closed
paths. With the weights o /k!, this gives us the Estrada centrality
x; = [exp(aA)]..;

for the weights o, we have the resolvent centrality
zi = [(I - ozA)_l]Z.Z..

Computing these quantities exactly is typically rather expensive, but there
are fast estimation mechanisms. In particular, we can combine Krylov meth-
ods for quickly computing exp(aA)v or (I — a)~'v for an arbitrary vector v
with the stochastic diagonal estimation idea: if z is a vector of independent
entries with mean zero and variance one, then

E[z[f(A)z]:] = f(A)a-
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5 Closeness centrality measures

Yet another notion of centrality involves how close nodes are to each other
in the graph. If d;; is the shortest distance from node j to node 4, then the
closeness centrality of j is

-1

Cj = [Z dij

This version of closeness centrality rewards short paths from j; there is also
a version that rewards short paths to j. The harmonic centrality of j is

hj =Y d,

i.e. it looks like closeness centrality, but with the sum and the inverse swapped.
As with Isomap, the expensive part of a closeness centrality computation is
generally the all-pairs shortest path computation used to obtain the dis-
tances. Hence, there is an issue to the scalability of closeness cetnrality and
harmonic centrality. As with Isomap, though, we can approximate these
centrality measures by only looking at paths through intermediate landmark
or pivot vertices in the graph.

The closeness centrality and harmonic centrality consider only the geodesic
(shortest path) distances. The current flow centrality or equivalently (infor-
mation centrality) instead uses the resistance distance. Let

C'= (L +ee")™!

be the so-called conductance matrix associated with the graph, and recall
that the effective resistance from i to j is

I 1 I I
Summing over ¢, we have that the current centrality of j is

2
-1 _ 1 1

As in the previous section, we can estimate the traces and diagonal elements
that appear in this formula via stochastic methods.
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The random walk closeness centrality is computed in terms of mean first
hitting time (or mean first passage) for a random walker in the graph. Let P
be the transition matrix for a random walk in a graph; the mean first hitting
time to reach node j from a starting distribution vector 7° is

hj=>_e"[P_]'[x"]

t=0

where P_; denotes the matrix P with column and row j omitted, and [7"]_;
is the vector 7° with row j omitted. This is a geometric series, and so we
can write the infinite sum as

hj=e"(I — P_;)[n"];.

While this might initially seem awkwardly expensive even for small graphs,
we can use the same trick that we saw in our discussion of leave-one-out cross
validation, and incorporate the effect of deleting a row and column of P by
instead adding a border:

a=B (58T

If P is small enough that factorization of I — P is plausible, we can solve these
systems using an LU factorization of the (singular) matrix I — P. However,
we can go further.

Recognizing that h; looks very much like a Schur complement in a larger
matrix, we rearrange again to obtain

I—-P m e T 0
el 0 of |ht]=]-1
€ 0 O y 0

Gaussian elimination of y gives us

R N R R

and back-substitution yields

R -

J
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or

Bl o]" [1-pP 7" e,
J 1 T 1|

Let B denote the matrix that appears in all these expressions after elimina-

tion of vy, i.e.
[ — P 7°]
B=1 r 0

Then define
f= B_len—i-la g = B_Ten—H

and observe that we have written hj_l as

h;l =9;f;/(B™)jj = gni1-

Hence, we can compute the mean hitting time for every node in the network
in terms of two linear solves with B and B” and a diagonal computation
for B~!, which we might tackle directly or by using the stochastic diagonal
estimator described before.

6 Between-ness centrality measures

Where closeness centrality is used to find nodes that are close to many other
nodes, betweenness centrality measures are used to find nodes that appear
in many paths between nodes. The most common form of betweenness cen-
trality focuses on shortest paths. As in the case of closeness centrality, the
expensive part of betweenness centrality computations is an all pairs short-
est path computation. A method due to Brandes combines some steps to
go in time proportional to the number of nodes times the number of edges;
a later approximation scheme involving intermediate pivot or landmark ver-
tices runs more quickly (in time proportional to the number of pivots times
the number of edges).

Just as we can transition from geodesic distances to flow distances or
random walk distances in closeness centrality, we can do the same for be-
tweenness centrality. Similar techniques to those we saw with closeness cen-
trality also apply for attempting to accelerate these betweenness centrality
computations.
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