
Bindel, Spring 2021 Numerics for Data Science

2021-04-22

1 Semi-supervised learning
Suppose we have a collection of objects that we want to classify one of two
ways. Given some labeled examples, how should we label the remaining
objects? This is a standard semi-supervised learning task. Of course, labels
alone do not help us unless we have some idea how the objects are related
to each other. In this lecture, we will assume that this information comes in
the form of a weighted graph, where the objects to be classified are vertices
and the edge weights represent the degree of similarity or connectedness.
Our problem, then, is to label the remaining objects so that — as much as
possible — similar objects will share the same label.

Before writing methods, we will first introduce some notation. We will
start with the two-class case, and turn to the multi-class problem later. Let
x be the vector of class labels; ideally, we would like x ∈ {0, 1}n. We order
the vertices so that the labeled examples appear last, and partition x into
unlabeled and labeled subvectors:

x =

[
u
y

]
,

where u ∈ {0, 1}nu is unknown and y ∈ {0, 1}ny is known. We let the
weighted adjacency matrix A encode the similarity, and let L = D − A be
the weighted Laplacian. To measure the quality of a class assignment, we
look at the quadratic

xTLx =
∑

(i,j)∈E

aij(xi − xj)
2

which, for 0-1 vectors, gives the total weight of all between-class edges. We
partition L and A conformally with the partitioning of x:

L =

[
Luu Luy

Lyu Lyy

]
.

Then we have
xTLx = uTLuuu+ 2uTLuyy + yTLyyy.

Alas, optimizing this function with respect to the class assignments u is a
challenging discrete optimization problem.



Bindel, Spring 2021 Numerics for Data Science

2 Soft labels
The optimization is easier if we relax the problem, replacing binary class
labels with real-valued soft labels. Then we have a continuous quadratic
optimization for which the critical point equation is

[Lx]u = Luuu+ Luyy = 0.

The matrix L is positive semi-definite, with null vectors that are constant
on each connected component; but we will assume that we have at least one
labeled example in each connected component, so that Luu is nonsingular.

It is worth looking at the scalar equations in order to understand this
system in more detail. Let us write row i of the critical point equations as

dixi −
n∑

j=1

aijxj = 0,

and rearrange to find

xi =
n∑

j=1

aij
di
xj.

The weights aij/di are non-negative and sum to one, so this tells us that for
each i where the label is unknown, we are choosing xi to be the weighted
average of the neighbor labels. This tells us that (for example) all of the
computed soft labels will be in the interval [0, 1].

The averaging interpretation of the equlibrium of the equation suggests
an algorithm for computing the soft labels by interpreting the averaging
operation as an update equation:

xnewi =
n∑

j=1

aij
di
xj.

Several classical point relaxation methods of numerical linear algebra follow
this approach, differing in the order in which the updates are computed and
applied. Jacobi iteration updates the entire u vector based on the old guesses;
Gauss-Seidel sweeps through the labels and updates them in a fixed order,
using the most recent guesses in each update; and Gauss-Southwell chooses
the next label to update adaptively, based on the size of a corresponding
residual element. In machine learning, these are known as label propagation



Bindel, Spring 2021 Numerics for Data Science

methods, though label propagation methods generally include an additional
rounding operation to turn soft labels into hard labels at each step. The
convergence of such iterations depends strongly on the nature of the similarity
graph: if it is “tightly connected,” the iterations converge quickly, while the
iterations may converge much more slowly if the connectivity is relatively
sparse. We will return to this point later.

3 From Laplacians to kernels
We have seen an expression of the form

u = −L−1
uuLuyy

once before, in our initial discussion of Gaussian processes. There, instead
of the graph Laplacian, we saw the precision matrix (the inverse of the co-
variance). We would therefore like to say that L−1 is a kernel. Of course,
we have to worry about a slight caveat: L is not invertible! Hence, while we
can still define a kernel associated with L, we will have to use a conditionally
positive definite kernel associated with the pseudo-inverse L†.

3.1 The pseudoinverse as a kernel
The Laplacian pseudo-inverse is L†, corresponding to the minimal-norm least-
squares solution to linear systems with L. In terms of the eigendecomposition
L = QΛQT , the pseudo-inverse is L† = QΛ†QT where λ†i = λ−1

i for nonzero
λi, and is zero otherwise. Note that LL† = L†L = J where J is the centering
matrix J = I − eeT/n.

Indeed, we can think of the soft label problem as a kernel method involv-
ing the (conditionally positive definite) kernel matrix L†; that is,

u = [L†]uyc+ µe

where the weight vector c is given by[
[L†]yy e
eT 0

] [
c
µ

]
=

[
y
0

]
.

To see this is equivalent to what we wrote before, we observe that

Luu[L
†]uy + Luy[L

†]yy = Juy = eeT/n

Luue+ Luye = 0



Bindel, Spring 2021 Numerics for Data Science

Because eT c = 0 by construction, we therefore have

Luuu+ Luyy = Luu([L
†]uyc+ µe) + Luy([L

†]yyc+ µe) = 0,

which is indeed the equation that we used to define u previously.

3.2 Laplacian features
It is also helpful to think about this kernel in terms of feature vectors. Let
ΨT = Q′Λ′−1/2, where Q′ and Λ′ are the parts of the eigendecomposition
corresponding to the nonzero eigenvalue, so that L† = ΨTΨ. The columns
of Ψ are the feature vectors in the graph associated with the kernel, and the
soft label function is equivalent to xi = ψT

i d+µ where d is the minimal norm
vector such that ΨT

y d + µe = y. To see that this is equivalent, consider the
constrained optimization

minimize 1

2
∥d∥2 s.t. ΨT

y d+ µe = y,

and note that the KKT equations are I Ψy 0
ΨT

y 0 e
0 eT 0

dλ
µ

 =

0y
0

 .
Eliminating the first equation d = −Ψyλ gives us[

−ΨT
yΨy e
eT 0

] [
λ
µ

]
=

[
y
0

]
,

which we can rewrite as [
[L†]yy e
eT 0

] [
−λ
µ

]
=

[
y
0

]
.

This is the same system that we saw a moment ago, but with c = −λ
reinterpreted as a vector of Lagrange multipliers. Therefore, the minimal
norm coefficient vector in the feature space is d = Ψyc, which gives us the
prediction

u = ΨT
ud+ µe = ΨT

uΨyc+ µe = [L†]uyc+ µe.

We will see the eigenvector features associated with the L† kernel again
next time when we address unsupervised learning with graphs.



Bindel, Spring 2021 Numerics for Data Science

4 Electrical analogies
So far, we have focused on a purely mathematical intuition for the soft la-
beling problem. But we can also consider a more physical picture. We will
consider the flow of current through a resistor network, which is a common
choice in this business1 We suppose there are n nodes connected by resistors.
At each node, we have a voltage vi, and on each resistor edge we have a
resistance rij. There are two basic ingredients to the equations:

• A constitutive law: For a linear resistor, the current from i to j is

Iij = r−1
ij (vi − vj).

• A balance law: The total current leaving a node is zero, or∑
j

Iij = 0.

Putting these two ingredients together gives us the system∑
j∈Ni

r−1
ij (vi − vj) = 0

at each node i for which we do not explicitly control the voltage (by attach-
ing the node to ground or a voltage supply) or inject a current. This gives
us a weighted Laplacian linear system, where the Laplacian is known as the
conductance matrix in circuit theory, and the edge weights aij are the ele-
ment conductances (inverse resistances2). Hence, the soft labeling problem is
equivalent to drawing a resistive circuit network and attaching some nodes to
a unit voltage supply (the examples labeled 1) and others attached to ground
(the examples labeled 0). The intuition is that nodes that are connected by
low-resistance edges or paths tend to have similar voltages. The Laplacian
quadratic form is associated with resistive power loss.

Whether the analogy to circuit theory provides insight or not probably
depends on your background. But the analogy is sufficiently widely used that
it is worth knowing about, whether or not you find it provides you with any
personal intuition.

1Other analogies involve pressure-driven flow through a pipe network or motion of a
spring network.

2In a circuit theory class, I would write the conductances as gij = r−1
ij . But to maintain

notational consistency with the rest of the lecture, we will use aij here.



Bindel, Spring 2021 Numerics for Data Science

5 Kernels and distances
Positive definite kernels define inner products in a feature space, and inner
products define a Euclidean distance structure. That is, if ψ is a feature map
for a kernel on a space X , then

∥ψ(x)− ψ(y)∥2 = ψ(x)Tψ(x)− 2ψ(x)Tψ(y) + ψ(y)Tψ(y)

= k(x, x)− 2k(x, y) + k(y, y).

In the positive definite case, we can therefore use the kernel to define a
squared distance on X :

d(x, y)2 = k(x, x)− 2k(x, y) + k(y, y),

and this distance satisfies all the properties that a distance is supposed to
satisfy (positivity, symmetry, and the triangle inequality).

Of course, the kernel associated with the graph Laplacian is only positive
semi-definite because of the null vector. The usual hazard for semi-definite
kernel functions is that we might have distinct points in X with the same
feature vector, and a distance between two points is supposed to be nonzero
if the points are distinct. We do not have to worry about this problem with
the Laplacian kernel, though, as the construction in this case looks like

d2ij = (ei − ej)
TL†(ei − ej);

and since the vectors ei− ej are orthogonal to the null vector of all ones, this
quantity will be positive for all i ̸= j.

We sometimes call d2ij the resistance distance, since in the electrical anal-
ogy it corresponds to the effective resistance between nodes i and j summa-
rized over all possible network paths. In the physical analogy, the current
balance law holds in the following generalized sense: if S is the set of nodes
for which we have specified voltages (label information), then for any i ̸∈ S,∑

j∈S

d−2
ij (vi − vj) = 0;

we can rewrite this as
vi =

∑
j∈S d

−2
ij vj∑

j∈S d
−2
ij

;



Bindel, Spring 2021 Numerics for Data Science

that is, the computed value at node i is a weighted average of the known
values, where the weights are proportional to the inverse-square distances.
This formula for the soft labeling function works even with other kernel
functions — though, of course, we lose the circuit analogy!

6 The heat kernel
So far, we have focused on the inverse Laplacian graph kernel. However,
this is not the only choice! Another kernel that we can use for many of the
same purposes is the heat kernel, which is given by exp(−tL). The parameter
is associated with time, and the entries of exp(−tL) can be interpreted in
terms of the diffusion of heat from a source at i to a target at j within time
t. Alternately, the entries exp(−tL)ij can be interpreted as the probability
that a continuous random walk starting from i will be at j at time t.

7 Extending to multi-class learning
So far, we have focused on the two-class case with 0-1 labels. For the more
general case where we want k different classes, we use the same technique
applied to k indicator vectors, one for each class. That is, we replace the
vector x ∈ Rn with the matrix X ∈ Rn×k. In the hard label case, we let
xik be one if i belongs to class k and zero otherwise. In the soft label case,
we assign node i to the class k for which xik is maximal. We also have that∑

k xik = 1, and so sometimes xik is interpreted as the probability that node
i belongs to class k.

8 The Laplace solver building block
We conclude this lecture with a brief discussion of the landscape of methods
for solving Laplacian linear systems.

For small systems — up to a few thousand nodes — there is not much
to discuss. In these cases, forming and factoring the Laplacian matrix as
a dense matrix is usually fine, and requires little thought or care. Past a
few thousand nodes, though, the O(n3) cost of a dense matrix factorization
becomes prohibitive. In this case, we can either



Bindel, Spring 2021 Numerics for Data Science

• Use a sparse direct method that computes a factorization in less than
O(n3) time, or

• Use an iterative solver.

Of course, the two methods are not mutually exclusive, and we often use
approximate factorizations as preconditioners for iterative methods. But it
is important to recognize that many graphs are either well suited to itera-
tive methods or well suited to sparse direct solvers. The key distinction is
whether the graph can be separated by relatively small cuts (a problem we
will consider in the next lecture).

When a graph can be partitioned with a small cut, we can try to solve
it by a divide and conquer approach. Suppose that there is a small vertex
separator that partitions the graph into two roughly-equal size pieces. If we
label the two separate pieces first and then put the separator at the end,
then we can write the Laplacian system in block form as

L =

L11 0 L13

0 L22 L23

L31 L32 L33

 .
The structure comes from the observation that the degrees of freedom in the
two pieces (block 1 and block 2) are not directly connected. Block Gaussian
elimination on the system gives us

S = L33 − L31L
−1
11 L13 − L32L

−1
22 L23

Sx3 = b3 − L31L
−1
11 b1 − L32L

−1
22 b2

L22x2 = b2 − L23x3

L11x1 = b1 − L13x3

Hence, if we can quickly solve systems with L11 and L22, then we can form
and solve a much smaller Schur complement system to couple them together.
The nested dissection approach applies this idea recursively, and gives us a
very fast solver if we can find small separators.

Of course, the extreme case of small separators is when we have a tree.
In this case we can produce very fast solvers that run in linear time in the
matrix size. One way to see this is in the electrical network analogy: we can
compute the resistance between any pair of nodes quickly because it is just
the sum of the resistances along the unique path between those nodes! More



Bindel, Spring 2021 Numerics for Data Science

generally, graphs that are associated with nearest neighbor connectivity in
2D (or sometimes 3D) tend to have small tree width, and are good for sparse
solvers. There are good sparse solvers in the world, and I do not recommend
writing your own. But it is important to know what graphs are well suited
to sparse solvers.

The opposite extreme is when there are no small separators. In this case,
though, the smallest nonzero eigenvalue of the Laplacian is usually far from
zero, so that the condition number of the Laplacian system is not too large.
This is exactly the situation in which standard iterative methods work well.


	Semi-supervised learning
	Soft labels
	From Laplacians to kernels
	The pseudoinverse as a kernel
	Laplacian features

	Electrical analogies
	Kernels and distances
	The heat kernel
	Extending to multi-class learning
	The Laplace solver building block

