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1 Graphs and linear algebra
Formally, an unweighted graph is G = (V , E), where E ⊂ V × V . Informally,
V consists of things we want to model and E represents the relations between
them. It is a very flexible representation: we use graphs to represent friend-
ships between people, wires between routers, citations between papers, links
between objects in a data structure, and many other things. When the bare
topology of the relationships does not provide enough modeling power, we
might also consider including functions on V or E corresponding to different
attributes. The most common case is a scalar weight function assigned to
each edge that corresponds to the importance of the relation: in a social net-
work, for example, maybe a close and active friendship has more weight than
a casual acquaintance. We use relationship information encoded in graphs to
reason about logical groupings (whether we call them communities or clus-
ters), about power relations and influence, and about dynamic processes like
the spread of rumors or disease.

Matrix methods for network analysis rely on a sort of pun: we encode the
network as a matrix, translate the question into linear algebraic terms1, and
commence to compute. There are many possible matrices associated with a
graph, and we use them to reason about different things. We consider three
interpretations of these network matrices:

• A matrix may represent a linear map between different spaces, typically
mapping vertex properties to edge properties, or vice-versa. Examples
include the discrete gradient operator and the edge sum operator.

• A matrix may represent an operator mapping the space of functions
over the vertices (or over edges) to itself. Examples include transition
matrices for random walks defined on the graph.

• A matrix may represent a quadratic form mapping functions on the
vertices (or edges) into scalars. Often the quadratic form has an easy
to interpret meaning for special inputs; for example, the quadratic form
for the combinatorial Laplacian counts cut edges in graph partitioning.

1“Mathematicians are like Frenchmen: whatever you say to them they translate into
their own language and forthwith it is something entirely different.” – Goethe
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2 Adjacency and degrees
If we identify vertices in the graph with indices 1, . . . , n, then the (un-
weighted) adjacency matrix A ∈ Rn×n has entries

aij =

{
1, (i, j) ∈ E
0, otherwise.

For graphs in which edges have positive weights, we sometimes use the
weighted adjacency matrix, with aij giving the edge weight for (i, j) ∈ E .

The degree di of a node is the sum of the weights on the incident edges.
When the graph is directed, the in-degree and out-degree may differ; for the
moment, we will stick with the directed case. We let d ∈ Rn denote the
vector of weighted node degrees, and let D denote the matrix in which the
weighted node degrees appear on the diagonal.

The adjacency matrix and the degree matrices are building blocks for
several other matrices, but they are also useful on their own. First, as a
linear operator, the adjacency matrix accumulates values from neighbors;
that is,

(Ax)i =
∑
j∈Ni

xj

where Ni = {j : (i, j) ∈ E} is the neighborhood of i. If xj is the number
of paths of length k leading from starting point to node j, then (Ax)i is the
number of paths of length k to all neighbors of node i — that is, the total
number of paths of length k + 1 to node j. Therefore,

[Ak]ij = number of paths of length k from i to j.

We use this formula in many ways; for example, it lets us write number of
triangles in an undirected graph (closed cycles of length three) as

number of triangles = 1

3

∑
i

[A3]ii =
1

3
tr(A3)

where we divide by three because each triangle is counted once for each of its
vertices. We also know, for example, how to approximate the number of long
paths between i and j in terms of the dominant eigenvector (and associated
eigenvalue) of A.
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The matrix A also defines a quadratic form that is useful for counting
edges. Let x ∈ {0, 1}n be the indicator for a subset of vertices S ⊂ V . Then

xTAx =
∑
i,j

aijxixj =
∑

(i,j)∈S×S

aij,

i.e. xTAx is the total (directed) edge weight between nodes in S, or twice the
total undirected edge weight. If x is an indicator then xTx = |S|, and so

xTAx

xTx
= mean degree within S.

If S is a clique, the mean degree within S is |S| − 1; therefore

|S| − 1 =
xTAx

xTx
= ρA(x) ≤ λmax(A),

since λmax(A) is the largest possible value for the Rayleigh quotient ρA(x).
Hence, the maximum clique size k(G) has the bound

k(G) ≤ 1 + λmax(A).

This is an example of a result in spectral graph theory, i.e. the study of
graphs in terms of eigenvalues and eigenvectors of associated matrices. In
fact, another continuous optimization problem due to Motzkin and Straus
gives the clique number exactly:

1− 1/k(G) = max
x∈∆n

xTAx, where ∆n ≡ {x ∈ Rn : x ≥ 0, eTx = 1}.

The optimization is now carried out over the simplex ∆n rather than over
the Euclidean unit ball used in the spectral bound.

If x is an indicator for a set S, we can also use the quadratic form

xTDx =
∑
i∈S

di = edges incident on S.

Therefore,

xTDx− xTAx = xT (D − A)x = edges between S and SC .

We will see more of the combinatorial Laplacian matrix L = D − A shortly.
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3 Random walks and normalized adjacency
Now consider a random walk on a G, i.e. a Markov process where the walker
location X t+1 at time t+1 is chosen randomly from among the neighbors of
the previous location X t with probability determined by the edge weights.
Using the properties of conditional probability,

P{X t+1 = i} =
∑
j

P{X t+1 = i|X t = j}P{X t = j},

and the rule for randomly choosing a neighbor gives

P{X t+1 = i|X t = j} =
aij
dj

.

Letting πt+1 ∈ Rn be the column vector whose entries represent the probabil-
ity that X t+1 = i, and similarly with πt, we write the equation for conditional
probability concisely as

πt+1 = (AD−1)πt.

The matrix T = AD−1 is the transition matrix for the random walk Markov
chain2. Powers of T have an interpretation similar to that of powers of A,
but rather than counting length k paths, T k computes probabilities:

[T k]ij = P{Xk = i|X0 = j}.

Assuming the graph is connected and and aperiodic3, the matrix T has a
unique eigenvalue at 1, and all other eigenvalues are inside the unit circle. In
this case,

lim
k→∞

T k = T∞ = (π∗)eT

where π∗ is a probability vector representing the stationary distribution for
the Markov chain. In the undirected case, the stationary distribution is rather
simple: π∗

i = di/(2m). Things are more interesting for directed graphs.
2We use the convention that probability densities are column vectors, and that aij

represents a transition from j to i. If G is directed, we also denote by D the out-degree
of the nodes. This is consistent with the conventions in numerical linear algebra; in other
areas, probability densities are typically rows.

3The graph is aperiodic if there is some k such that there is a length k path between
any nodes i and j.
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While the eigenvalue at 1 and the associated stationary distribution are
particularly interesting, the other eigenvalues and vectors are also interesting.
In particular, suppose T = V ΛV −1, and consider

∥T k − T∞∥ = ∥V Λ̄kV −1∥ ≤ κ(V )|λ2|k,

where κ(V ) = ∥V ∥∥V −1∥ is the condition number of the eigenvector matrix,
Λ̄ is the diagonal matrix of eigenvalues with the eigenvalue at one replaced
by zero, and |λ2| is the maximum modulus of all eigenvalues other than
the eigenvalue at one. Therefore, the asymptotic rate of convergence of the
Markov chain, also known as the mixing rate is determined by the second-
largest eigenvalue modulus of T .

To understand the mixing rate in more detail (in the undirected case), it
is helpful to consider the closely related normalized adjacency matrix

Ā = D−1/2AD−1/2.

Note that Ā = D−1/2TD1/2, so

(v, λ) an eigenpair of Ā ⇐⇒ (D1/2v, λ) an eigenpair of T.

The eigenvalues of Ā are critical points of

ρĀ(x) =
xTD−1/2AD−1/2x

xTx
;

substituting x = D1/2y, we have

ρĀ(D
1/2y) = ρ(A,D)(y) =

yTAy

yTDy
.

If y is an indicator for a set S, this last expression represents the fraction
of edges incident on S that are to other nodes in S. If z = 2y − e is +1 on
S and −1 on Sc, then zTDz = 2m and zTAz is 2m minus twice the total
weight |C(S)| of edges from S to SC ; hence,

zTAz

zTDz
= 1− |C(S)|

m

If we restrict to the case where the same number of edges are incident on S
and SC , then z is D-orthogonal to the all one vector, and so ρ(A,D)(z) is a
lower bound on the eigenvalue closest to one. Thus, spectral analysis lets us
bound the mixing rate in terms of the normalized cut size |C(S)|/m.
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4 Discrete gradients and the Laplacian
For an unweighted graph, the discrete gradient G ∈ Rm×n is a matrix in which
each row represents an edge (i, j) ∈ E by (ei − ej)

T . If x is an indicator for
a set S, then Gx is nonzero (±1) only on edges between S and Sc; hence,

∥Gx∥2 = edges between S and SC .

We can rewrite this as xTGTGx = xTLx where

L =
∑

(i,j)∈E

(ei − ej)(ei − ej)
T .

Each term in this sum contributes one to the lii and ljj entries through
the eie

T
i and eje

T
j products; the cross terms fill in lij = lji = −1. Putting

everything together, we have

L = D − A.

The matrix L is known as the combinatorial Laplacian, or sometimes simply
as the Laplacian. The same construction holds in the weighted case, where
it corresponds to

L =
∑

(i,j)∈E

aij(ei − ej)(ei − ej)
T

where aij is the weight of the (i, j) edge. In either case, the smallest eigenvalue
of L is zero, corresponding to an eigenvector of all ones. The multiplicity of
the zero eigenvalue is equal to the number of connected components in the
graph; assuming there is only one connected component, the second largest
eigenvalue λ2 is a lower bound on xTLx for any xT e = 0; if we choose x to be
a ±1 vector indicating the split between equal size sets S and Sc, then xTLx
also gives four times the number of edges cut by the partitioning. Hence,
λ2/4 is a lower bound on the minimal bisector size.

The combinatorial Laplacian also can be interpreted as a linear operator,
and in this guise it plays a role as the generator for a continuous-time random
walk involving a random walk in which the time elapsed between each con-
secutive pair of steps is given by an independent exponential random variable
with mean one. In this case, we have

exp(−sL)ij = P{X(s) = i|X(0) = j}.
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The matrix exp(−sL) is known as the heat kernel on the graph because it
can also describe continuous-time diffusion of heat on a graph.

The normalized Laplacian is L̄ = D−1/2LD−1/2 = I − Ā; the eigenvalues
of the normalized Laplacian can also be expressed as critical points of the
generalized Rayleigh quotient

ρ(L,D)(x) =
xTLx

xTDx
.

Thus twice the Rayleigh quotient gives the fraction of all edges that go be-
tween S and SC if x is a vector which is +1 on the set S and −1 on Sc.

5 Discrete sums and the signless Laplacian
The discrete sum operator is G+ ∈ Rm×n where each row corresponds to an
edge (i, j) ∈ E and has the form (ei + ej)

T . The signless Laplacian is

L+ = D + A = (G+)T (G+) =
∑

(i,j)∈E

(ei + ej)(ei + ej)
T .

The signless Laplacian is positive semi-definite; but unlike the combinatorial
Laplacian, it may or may not have a null vector. If there is a null vector x
for the signless Laplacian, then we must have xi = −xj whenever (i, j) ∈ E ;
this implies that x indicates bipartite structure where the set S with positive
elements can have edges to a set S ′ with negative elements, but neither S
nor S ′ may have any other edges. There has been some work on the spectral
theory for the signless Laplacian, but it is generally much less used than the
combinatorial Laplacian.

6 Modularity matrix
Suppose we want to find a tight cluster in our graph. One approach is to
look for sets of nodes that make xTAx large; but large relative to what?
For an undirected graph, we use the quadratic form xTAx to count internal
edges in a set. But a set may have many internal edges purely as an accident
of having many high-degree nodes: high-degree nodes are highly likely to
connect to each other simply because they are highly likely to connect to
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anyone! Hence, we would like a reference model so that we can see whether
the edge density in a subgraph is “unusually” high relative to that reference.

The simplest reference model that takes into account the effect of degree
distribution is sometimes called the configuration model. In the configuration
model, we prescribe the vector d of expected node degrees. We then add
m edges, each of which is (i, j) with probability didj/(2m)2; self-loops and
repeating edges are allowed. With this construction, the expected adjacency
is

Ā =
ddT

2m
,

which has the correct expected degree distribution. The modularity matrix
is defined to be

B = A− Ā,

and if x is an indicator for S, the quadratic form xTBx indicates the num-
ber of “excess edges” within S compared to what we would predict in the
configuration model.

7 And many more
The list of graph matrices that we have discussed is by no means exhaustive.
We will see a few more examples this week, including the heat kernel matrix
and the PageRank matrix. But there are many more besides; for example,
recent work by Leskovec and Benson used a motif adjacency matrix M = (A⊙
A)A for which mij represents the number of triangles in the graph involving
the edge (i, j). And one can define ever more exotic matrix representations.
However, the adjacency, Laplacian, and their close neighbors suffice for many
applications.
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