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1 Regularization in kernel methods
Last time, we discussed kernel methods for interpolation: given fX , we seek
an approximation f̂X such that f̂X = fX . However, the kernel matrix KXX

is sometimes very nearly ill-conditioned, particularly when the underlying
kernel is smooth (e.g. a squared exponential kernel). This near-singularity
means that when f is not smooth enough to lie in the native space H for the
kernel, or when our measurements are contaminated with some error, kernel
interpolation schemes may not give accurate results. And even when f is in
the appropriate native space and we are able to evaluate f exactly, this lack
of stability may cause problems because of the influence of rounding errors.

We deal with the problem of instability in kernel methods the same way
we deal with instability in other fitting problems: we regularize. There are
many ways that we might choose to regularize, but we will focus on the
common Tikhonov regularization approach. As always in kernel methods,
there are multiple stories for the same method; we will tell two of them.

1.1 Feature space and kernel ridge regression
Recall the feature space version of kernel interpolation: write

f̂(x) = ψ(x)T c

where c is determined by the problem

minimize ∥c∥2 s.t. ΨT c = fX

with Ψ the matrix whose columns are feature vectors at the data points in
X. Kernel ridge regression instead solves the unconstrained minimization
problem

minimize λ∥cλ∥2 + ∥ΨT cλ − fX∥2

That is, rather than enforcing the interpolation constraints, we minimize a
combination of a regularity term (the norm of cλ) and a data fidelity term.
As the weight λ goes to zero, we recover kernel interpolation. For nonzero λ,
we solve the critical point equations

λcλ +Ψ(ΨT cλ − fx) = 0,
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which we may rewrite using r = ΨT cλ − fX as[
λI Ψ
ΨT −I

] [
cλ
r

]
=

[
0
fX

]
.

Eliminating cλ gives the equation

−(I + λ−1ΨTΨ)r = fX ,

and back-subsittution yields

λcλ = Ψ(I + λ−1ΨTΨ)−1fX .

Dividing both sides by λ, we have

f̂λ(x) = ψ(x)T cλ = ψ(x)TΨ(ΨTΨ+ λI)−1fX ,

and applying the kernel trick gives

f̂λ(x) = kxX(KXX + λI)−1fX .

As with kernel interpolation, the story of kernel ridge regression can be
told without reference to a particular basis or feature map. Observe as before
that ΨT cλ = f̂λ,X and that ∥cλ∥ = ∥f̂∥2H for an appropriate reproducing
kernel Hilbert space. The kernel ridge regression problem is therefore

minimize λ∥f̂∥2H + ∥f̂X − fX∥2 over f̂ ∈ H.

1.2 GPs with noise
The interpretation of Tikhonov regularization for Gaussian processes is straight-
forward. Suppose that f is drawn from a GP with mean zero and covariance
kernel K, and we wish to compute a marginal distribution conditioned on
knowing y = fX + u where u is a vector of independent Gaussian random
variables with zero mean and variance σ2. Then the posterior distribution
for f conditioned on the data is a GP with mean and covariance

µ̂(x) = kxXK̃
−1fX , k̂(x, x′) = k(x, x′)− kxXK̃

−1kXx′

where K̃ = K + σ2I. The derivation comes from looking at the multivari-
ate Gaussian distribution of the data (y) together with function values at
locations of interest.
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2 Choosing hyperparameters
Whether we call it kernel ridge regression or GP regression with noise, Tikhonov
regularization involves a free parameter — which may come in addition to
other hyper-parameters in the kernel, like length scale or scale factor. How
do we choose all these hyper-parameters? There are several methods, though
all sometimes fail, and none of them is uniformly the best. We will discuss
four approaches: the discrepancy principle, the L-curve, cross-validation, and
maximum likelihood estimation.

2.1 The discrepancy principle and the L-curve
The discrepancy principle (due to Morozov) says that we should choose the
regularization parameter based on the variance of the noise. This may be
useful when the primary source of error comes from measurement noise from
instruments (for example), but often we do not have this information; what
shall we do then? Also, the discrepancy principle does not tell us what to do
with other hyper-parameters, such as kernel length scales.

The L-curve is a graphical plot on a log-log axis of the norm of the data
fidelity term versus the norm of the regularization term. Often such plots
have a “corner” associated with the favored choice λ∗ for the regularization
parameter. Increasing λ beyond λ∗ increases the residual error quickly, while
decreasing λ from λ∗ has only a modest impact on the residual error, but
causes a rapid increase in the size of the regularization term. As with the
discrepancy principle, the L-curve is primarily used for determining a single
regularization parameter, and not for fitting other hyper-parameters such as
the kernel length-scale.

2.2 Cross-validation
The idea of cross-validation is to fit the method to split the training data into
two sets: a subset that we actually use to fit the model, and a held-out set to
test the generalization error. We usually use more than one splitting of the
data to do this. For example, the leave-one-out cross-validation (LOOCV)
statistic for a regression method for a function f on data points X is

LOOCV =
1

n

n∑
i=1

(f (−i)(xi)− f(xi))
2
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where f (−i) refers to the model fit to all of the points in X except for xi.
One can do more complicated things, but the LOOCV statistic has a lovely
structure that lets us do fast computations, and this is worth exploring.

2.2.1 Fast LOOCV for least squares

Before we explore the case of kernel methods, let us first consider LOOCV
for the ordinary linear least squares problem:

minimize ∥Ax− b∥2

To compute the LOOCV statistic in the most obvious way, we would delete
each row aTi of A in turn, fit the model coefficients x(−i), and then evaluate
r(−i) = bi−aTi x(−i). This involves m least squares problems, for a total cost of
O(m2n2) (as opposed to the usual O(mn2) cost for an ordinary least squares
problem). Let us find a better way!

The key is to write the equations for x(−i) as a small change to the equa-
tions for ATAx∗ = AT b:

(ATA− aia
T
i )x

(−i) = AT b− aibi.

This subtracts the influence of row i from both sides of the normal equations.
By introducing the auxiliary variable γ = −aTi x(−i), we have[

ATA ai
aTi 1

] [
x(−i)

γ

]
=

[
AT b− aibi

0

]
.

Eliminating x(−i) gives

(1− ℓ2i )γ = ℓ2i bi − aTi x
∗

where ℓ2i = aTi (A
TA)−1ai is called the leverage score for row i. Now, observe

that if r = b− Ax∗ is the residual for the full problem, then

(1− ℓ2i )r
(−i) = (1− ℓ2i )(bi + γ) = (1− ℓ2i )bi + ℓ2i bi − aTi x∗ = ri,

or, equivalently
r(−i) =

ri
1− ℓ2i

.

We finish the job by observing that ℓ2i is the ith diagonal element of the
orthogonal projector Π = A(ATA)A−1, which we can also write in terms of
the economy QR decomposition of A as Π = QQT . Hence, ℓ2i is the squared
row sum of Q in the QR factorization.
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2.2.2 Fast LOOCV for kernels

The trick for computing the LOOCV statistic for kernels is similar to the trick
for least squares, at least in broad outlines. Let c be the coefficient vector
fit to all the nodes, and let c(−i) be the coefficient vector for the expansion
fit to all the nodes except node i; that is, we want c(−i)

i = 0 and we allow
r(−i) = f(xi)− kxXc

(−i) to be nonzero. Then[
K̃ ei
eTi 0

] [
c(−i)

r(−i)

]
=

[
fX
0

]
,

and Gaussian elimination of c(−i) yields

[K̃−1]iir
(−i) = eTi K̃

−1fX = ci,

and therefore
r(−i) =

ci

[K̃−1]ii
.

The observent reader may notice that this yields essentially the same argu-
ment we saw in the error analysis of kernel methods, and that [K̃−1]−1

ii is the
squared power function for evaluating the error at xi given data at all the
other points.

What about the derivatives of r(−i) with respect to any hyper-parameters?
After all, these are important if we are going to optimize. We know that

δ[K̃−1] = −K̃−1[δK̃]K̃−1

and differentiating c = K−1fX (and using the fact that the function values
are independent of the hyper-parameters) gives

δc = −K̃−1[δK̃]c.

Let w denote K̃−1ei; then

δci = −wT [δK̃]c, δ
(
[K−1]ii

)
= −wT [δK̃]w,

and the quotient rule, together with a little algebra, gives

δr(−i) =
[δK̃w]T (wci − cwi)

[K̃−1]2ii
.
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2.3 Maximum likelihood estimation
Finally, we consider the maximum likelihood estimation scheme. If we have
data y drawn from a distribution p(y; θ) where θ are unknown parameters,
the idea of maximum likelihood is to maximize p(y; θ) with respect to θ.
Often the probability density is awkwardly scaled for computation, and so
we typically instead use the log likelihood

L(θ) = log p(y; θ)

In the case of Gaussian processes, we have

p(y) =
1√

det(2πK)
exp

(
−1

2
(y − µ)TK−1(y − µ)

)
and

log p(y) = −1

2
(y − µ)TK−1(y − µ)− 1

2
log det(K)− n

2
log(2π)

The first term is the model fidelity term; it is larger the closer y is to µ in
the norm induced by K−1, with a maximum value of zero when y = µ. The
second term is the model complexity term; it is larger when K has lower
volume, i.e. the likely model predictions are in a smaller region. The last
term is independent of any kernel hyper-praameters, and so is irrelevant for
optimization.

With an eye to optimization, we again want to compute derivatives. The
derivative of the model fidelity term with respect to kernel hyperparameters
is straightforward:

δ

[
−1

2
(y − µ)TK−1(y − µ)

]
=

1

2
cT [δK]c

where c = K−1(y − µ). The more interesting piece is the derivative of the
log determinant. To get this, we observe that

det(I + E) =
n∏

i=1

(1 + λi(E)),

and if E is small, linearization about E = 0 gives

det(I + E) = 1 +
n∑

i=1

λi(E) +O(∥E∥2).
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Therefore, the derivative of the determinant at the identity in a direction E
is just tr(E) =

∑
i λi(E) =

∑
iEii. We deal with the more general case by

observing that det(K + E) = det(K) det(I +K−1E); hence,

δ[det(K)] = det(K) tr(K−1δK).

Finally, we have

δ[log det(K)] =
δ[det(K)]

det(K)
= tr(K−1δK).
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