
Bindel, Spring 2021 Numerics for Data Science

2021-04-01

1 Introduction
Last time, we discussed how to seek low-dimensional structure in the input
space for functions f : Ω ⊂ Rn → R for large n. In this lecture, we consider
how to find low-dimensional structure in the output space for f : Ω ⊂ Rn →
Rm where m is large and n is modest.

Of course, it is also possible to combine the techniques to deal with high-
dimensional input and output spaces, and this is frequently done in practice.

2 Interpolation and vector-valued functions
If n is not too large and f is smooth, a natural approach to approximating
f is interpolation. That is, let µ1, . . . , µk ∈ Rn be sample points and let
L1(µ), . . . , Lk(µ) be the Lagrange functions (or cardinal functions) forming
a k-dimensional basis for an approximation space V (with dim(V) = k).

The Lagrange functions, we might recall, have the property that

Li(µj) = δij;

we remind ourselves of this now, as it will be important again later. If we
start off with an arbitrary basis v1, . . . , vk for V , we can compute the Lagrange
functions as

Lj(µ) =
[
v1(µ) . . . vk(µ)

]

v1(µ1) v2(µ1) . . . vk(µ1)
v1(µ2) v2(µ2) . . . vk(µ2)

...
v1(µk) v2(µk) . . . vk(µk)


−1

ej,

where ej is the jth column of the identity. Then we can compute our ap-
proximation as

f(µ) ≈ f̂(µ) =
k∑

j=1

f(µj)Lj(µ).

To bound the error in such approximations, we use the same techniques
described last time. The error is within a factor of maxx

∑
j |Lj(µ)| of the

Bindel, Spring 2021 Numerics for Data Science

best possible in the space, and we can bound the latter in terms of Taylor
expansions (for example).

The approximations Lj(µ) depend on the space V and the points {µj}kj=1.
It does not depend on the particular basis we choose for V . However, it does
depend on the space V ! With the same set of points, we can get many
different interpolants associated with different approximation spaces (poly-
nomial spaces, spline spaces, piecewise linear spaces, or others). Different in-
terpolation schemes are appropriate under different regularity assumptions:
high-degree polynomial interpolation might make sense for interpolating very
smooth f , but not for a function that is nondifferentiable because of an ab-
solute value function (for example).

Independent of the exact space V , any method based on interpolation
through points {µ1, . . . , µk} will yield a result in the space sp[f(µ1), . . . , f(µk)].
But we can extract approximations to f(µ) from this subspace in other ways
than interpolating. For example, suppose f(µ) is defined implicitly by a set
of equations, e.g.

A(µ)f(µ) = b;

then we can choose an approximation f(µ) =
∑k

j=1 cjf(µj) by solving a proxy
system with k ≪ n unknowns, which we might be able to do much more
cheaply than solving a new system from scratch. This suggests that if we
have some way to evaluate the quality of a solution without a full evaluation
(e.g. by looking at the residual norm for some defining equation), we might be
able to use the subspace of approximations accessed by interpolation (which
has at most dimension k), but with the coefficients determined by a reduced
system of equations rather than by interpolation.

3 Learning from snapshots
If we are going to build a good approximating subspace from evaluation of f
at some sample points (sometimes called snapshots), we need a good method
for choosing those sample points. Some possible methods include:

• Choose k points on some type of regular grid.

• Choosing k points at random according to some distribution (e.g. uni-
form over the domain Ω).

• Choose k points according to a low-discrepancy sequence.

Bindel, Spring 2021 Numerics for Data Science

• Choose k points according to an experimental design method (e.g. using
a Latin hypercube).

Sampling on regular grids must be done with some care to avoid aliasing
issues when f has some periodicity to it. And random sampling tends to
produce some “clumps” in our domain, and so we may get more evently
spread points from a low-discrepancy sequence generator.

Frequently, when we look at a collection of snapshots, we will discover
that they have some redundancy to them. In fact, we hope they do! The
POD (or principle orthogonal directions) approach to reducing a snapshot
collection basically involves an SVD:[

f(µ1) . . . f(µk)
]
= UΣV T .

If there is an r-dimensional subspace of the k-dimensional snapshot space
that does a good job of capturing all the snapshots, we will have a small
value for σr+1, and the truncated factor Ur provides an orthonormal basis for
the relevant space.

Taking the SVD of a snapshot matrix can be seen as a discrete approxi-
mation of computing the eigendecomposition of

C =

∫
Ω

f(µ)f(µ)Tρ(µ) dµ

for which the dominant r eigenvectors span the “optimal” r-dimensional in-
variant subspace for approximating general f(µ) in the domain. In principle,
we could try to approximate the difference between the integral and the finite
sum (based on the smoothness of f), but we usually don’t bother in prac-
tice. If we have enough samples to reasonably cover the parameter space, we
typically assume a small value σr+1 is good evidence that the whole image
f(Ω) is well approximated by Ur.

4 Empirical interpolation method (EIM)
For constructing a low-dimensional space from which to draw approxima-
tion, an alternative to principle orthogonal decomposition is the empirical
interpolation method (EIM). The EIM algorithm is a greedy method that
simultaneously constructs a set of interpolation points (the so-called “magic

Bindel, Spring 2021 Numerics for Data Science

points”) and a basis for a subspace spanned by associated samples of the
function.

For this case, consider f : X × ⊗ → R, where X is essentially an index
set. For fixed µ ∈ Ω, we will write f(x, µ) = fµ(x). At each step, the EIM
algorithm solves the problem

xj+1, µj+1 = argmax |f(x, µ)− f̂j(x, µ)|

where f̂j(x, µ) is the interpolant for f based on {(xi, µi)}ji=1. Along the way,
one builds up a basis of functions for the nested interpolation spaces based
on scaled error functions, i.e.

hj(x, µ) =
f(x, µj+1)− f̂j(x, µj+1)

f(xj+1j, µj+1)− f̂j(xj+1, µj+1)
.

Readers familiar with univariate interpolation may recognize this as similar
to the construction of the Newton basis for polynomial interpolation. The
algorithm terminates when the maximum error falls below some tolerance.

Those readers who are afficianados of numerical linear algebra may rec-
ognize another algorithm lurking in the shadows. To make this more explicit,
note that the interpolant at step j is

f̂j(x, µ) =
[
h1(x) h2(x) . . . hj(x)

]

c1(µ)
c2(µ)

...
cj(µ)

 ,

where 
1

h1(x2) 1
h1(x3) h2(x3) 1

... . . .
h1(xj) h2(xj) . . . hj−1(xj) 1



c1(µ)
c2(µ)

...
cj(µ)

 =


f(x1, µ)
f(x2, µ)

...
f(xj, µ)

 ,

where we are using the fact (which holds by construction) that hi(xi) = 1
and hi(xℓ) = 0 for ℓ < i. We also observe that ci(µj) = 0 for i > j, again by
construction.

Bindel, Spring 2021 Numerics for Data Science

If the sets X and Ω are discrete, what we have done is to write

PFQ ≈
[
H11

H21

] [
C11 C12

]
where H11 is unit lower triangular and C11 is upper triangular, and the permu-
tation matrices P and Q reorder X so that x1, . . . , xj and µ1, . . . , µj appear
first in the ordering of variables. Then we seek the largest magnitude element
of

PFQ−
[
H11

H21

] [
C11 C12

]
=

[
0 0
0 (PFQ)22 −H21C12

]
in order to obtain xj+1 and µj+1 and extend the factorization. This is exactly
the procedure for Gaussian elimination with complete pivoting.

For reasons that I don’t entirely understand, the interpretation of the EIM
basis construction as Gaussian elimination with complete pivoting (GCP)
doesn’t seem to appear in the literature1, though a number of authors have
come close. The closest I have found to making this explicit is the idea of a
“continuous matrix” version of GECP was described in a 2014 SIREV paper
by Townsend and Trefethen, who comment that “we are not aware of explicit
previous discussions of LU factorization of a cmatrix.” A 2016 SISC paper
by Drmač and Gugercin suggests the use of GECP in a similar context, but
applied to the POD basis, and with an eye only to selecting interpolation
points (rather than selecting a subspace basis); for this purpose, the pivoted
QR approach that they analyze in detail (leading to the Q-DEIM method)
seems preferable.

5 Extracting solutions
The POD method and the EIM method give us a subspace from which to
draw approximations to f(µ). However, they do not tell us how to actually
choose the approximations. Of course, we can use interpolation; but, as
discussed earlier, we might prefer to use a method that consults with some
defining set of equations.

For the sake of concreteness, let’s again consider the problem of approx-
imating the function f(µ) implicitly defined by the equation

A(µ)f(µ) = b.

1At least, two days of searching didn’t turn it up

Bindel, Spring 2021 Numerics for Data Science

We will seek f̂(µ) ∈ V to approximately satisfy this equation. But what does
it mean to “approximately” satisfy the equation? There are several possible
ways we might approach this:

• Least squares: We might choose f̂(µ) = argminy∈V ∥A(µ)y − b∥2. Pro-
vided we have a basis V for our space, this requires forming A(µ)V ∈
Rm×k (with k matrix-vector products), solving a least squares problem
(in O(mk2) time), and then performing a matrix-vector product to re-
construct the solution (in O(mk) time). If A is dense, the dominant
cost is the time to compute A(µ)V ; this may or may not be true if A
is sparse.

• Galerkin: We might choose a space W and enforce the condition A(µ)y−
b ⊥ W . This is known as a Bubnov-Galerkin condition when W = V ;
otherwise, it is a Petrov-Galerkin condition. Unless A has some special
structure, the costs are similar to the least squares approach, with the
greatest cost being the formation of W TA(µ)V (the “projected system
matrix”), involving k matrix-vector products and an O(mk2) cost for
a matrix-matrix multiplication. Note that if A is a linear function of
µ (or a linear function of a few nonlinear functions of µ), we might be
able to do some pre-computation to get the online cost down to O(k3).

• Interpolation: We might choose k equations to enforce; the indices of
these equations are our “interpolation points” in the discrete setting. In
this case, we might be able to avoid the cost of computing A(µ)V , since
we only need a few rows. Note that this is a special case of Galerkin
where the test basis W consists of columns of the identity associated
with the indices for the enforced equations. The challenge for this
problem is choosing a good set of interpolation points (in the EIM
setting, these are the points selected during the subspace construction).

The error analysis of each of these methods follows the same general quasi-
optimality recipe: we establish a bound on the minimum distance between
f(µ) and V , then show that f̂(µ) is within some constant factor of that
best distance. The quasi-optimality factor depends on the stability of the
projected problem, and can often be computed explicitly.

Bindel, Spring 2021 Numerics for Data Science

6 Addendum: Low-discrepancy sequences
Consider the problem of sampling on the unit hypercube, whether for quadra-
ture or interpolation. One approach to distributing sample points is to take
independent draws from the uniform distribution; however, random draws
tend to include “clumps” (and leave some parts of the domain empty). What
we would really like is a sampling scheme that ensures that points are reason-
ably spread out (like what happens with grids) and yet is “random-seeming”
and not prone to aliasing issues (which is an advantage of random draws).

Discrepancy is a measure of the “clumpiness” of a distribution of sample
points2. A number of low-discrepancy sequences are available; these include
Halton sequences, Sobol sequences, and van der Corput sequences, for exam-
ple. These sequences can be generated rapidly (they mostly involve simple
recurrences), and there is good software available for them. Sampling via
low-discrepance sequences (vs independent random draws) is the key distinc-
tion between quasi-Monte Carlo methods and Monte Carlo methods (and the
reason that QMC tends to converge faster than standard MC).

2Actually, there are several measures that go under the common heading of “discrep-
ancy,” but all are getting at the same thing

	Introduction
	Interpolation and vector-valued functions
	Learning from snapshots
	Empirical interpolation method (EIM)
	Extracting solutions
	Addendum: Low-discrepancy sequences

