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1 Introduction
This week, we will consider the case of functions f : Ω ⊂ Rn → Rm where
either n is large (today) or m is large (Thursday). In both cases, we seek a
hidden low-dimensional structure that makes the function in some way easier
to handle.

Our main setting today will be scalar-valued functions (m = 1 and n
large) on a compact set Ω. We assume that our function has some type of
regularity; the simplest case is assuming f ∈ Cp(Ω,R), i.e. f has p continu-
ous derivatives. In this case, the optimal rate of uniform approximation as a
function of sample points N is ∥f − f̂∥∞ = O(N−p/n). Hence, for functions
where all we know in advance is bounded smoothness, the number of samples
required to reach a given error tolerance grows exponentially with the dimen-
sion n. This is one instance of the curse of dimensionality. The same basic
limit on approximation creates similar bottlenecks for global optimization
and for quadrature (the computation of definite integrals).

Fortunately, many functions we encounter in practice have additional
structure, such as high degrees of smoothness (at least in some directions, or
away from some creases or singular points) or an effective low-dimensional
dependence on the input, or a sparse sum of univariate (or low-dimensional)
functions. Many adaptive algorithms for function approximation work be-
cause they are look for signs of these types of structure, and exploit it when
it seems to be present. We focus today on a specific case where f(x) is
effectively low-dimensional.

2 Active subspaces
We consider the case where our high-dimensional function f(x) looks behind
the scenes like f(x) = g(Ax+ϵ(x)) where A ∈ Rk×n and g : Rk → R for some
modest k. The span of the rows of A is an active subspace associated with
the directions that matter for f , and the dependence of f on the orthogonal
complement matters little (if at all). That is, almost all the dependence on
x is mediated by the active variables y = Ax. The idea is closely related to
the notion of sufficient dimension reduction in statistics.
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Why should we ever expect to see this structure? We could say as a
purely empirical matter that this type of low-dimensional subspace comes
up often enough that we should check for it, and there is some value to this
perspective. In other cases, scaling principles or physical invariants suggest
possible ways to reduce the dimensionality (e.g. by non-dimensionalizing a
physical problem before applying numerical methods). But in some of the
situations where active subspaces are used, there is an a priori reason to
expect that even though it may not be easy to tease out by analytic tech-
niques like forming dimensionless groups, such a dimensionality reduction is
possible.

For example, one place that active subspaces have been used is in uncer-
tainty quantification involving coefficients appearing in partial differential
equations. In these cases, the vector x really corresponds to a discretiza-
tion of a function space (and so may be very high-dimensional indeed). But
particularly for many of the equilibrium equations of mathematical physics,
the property of elliptic regularity (known by other names as well, such as
St. Venant’s principle in mechanics) means that small localized changes to
an equation have little impact on the broad shape of the solution.

To make this a little more concrete, consider the case of a function

f(E) = h((A+ E)−1b)

where h has some amount of regularity (e.g. a known Lipschitz constant),
and the domain Ω ⊂ Rn×n consists of componentwise bounded entries. We
can rewrite this as

f(E) = h((I + A−1E)−1û), û = A−1b;

and if A−1E has sufficiently clustered eigenvalues1, we expect that there will
be good approximations to A−1E in small Krylov spaces generated by A−1E
and û.

3 Explicit construction
Suppose we believe that

f(x) = g(Ax+ ϵ(x))

1As should happen if A and E are discretizations of a differential operator and a
relatively compact perturbation, for those with some functional analysis background
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and we are able to compute gradients of f . By the chain rule, we have

∇f(x) = AT∇g(Ax)

The gradient based approach to computing the active subspace is to form

UΣV T =
1√
M

[
∇f(x1) . . .∇f(xM)

]
,

or (equivalently)

UΣ2UT =
1

M

M∑
j=1

∇f(xj)∇f(xj)
T

where x1, . . . , xM are αk log(n) independent samples from some density ρ
(here k is the anticipated rank and α is an oversampling factor of about
2-10). This is a randomized approximation to

C =

∫
(∇f(x))(∇f(x))Tρ(x) dx.

The active coordinates of interest are then computed from the leading sin-
gular vectors Uk, where one hopes for a significant spectral gap between σk

and σk+1. The process does depend on the choice of the density Ω; typical
choices include a uniform measure over a compact domain Ω or a Gaussian
distribution chosen to cover “usual” choices of parameters.

When explicit gradients are not available, one can approximate them by
computing local linear models (using finite differences or a local least squares
fit).

4 Using active subspaces
When we have an active subspace, what can we do with it? Briefly, the
answer might be “anything we would be happy to do with a low-dimensional
function.” Specifically, if we believe f(x) = g(Ax) and we have computed an
appropriate A, we can sample g (and ∇g(x) if we have ∇f(x) available) and
use it for

• Computing a surrogate or response surface used to approximate the
function at new points. These often involve kernel methods of the type
we will discuss next week.
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• Do sample-efficient quadratures (e.g. expected values and variances)

• Solve optimization problems, which are generally easier in lower-dimensional
spaces.

The observent reader might notice that all three of these tasks (function
approximation, quadrature, and optimization) are examples we gave earlier
in the notes of the “curse of dimensionality,” so it is not surprising that
dimension reduction on the input space would be useful in each case.

5 Implicit construction
So far, we have described how we might explicitly compute a low-dimensional
subspace that describes variation in a function. But if we believe such a
structure exists, we can also attempt to use it implicitly. This is the idea
behind the REMBO (Random Embedding for Bayesian Optimization) and
REGO (Random Embeddings for Global Optimization) algorithms. In the
REGO algorithm, for example, one solves a sequence of problems of the form

minimize f(Ay + p)

where A ∈ n× k is a random Gaussian matrix and p is a random “base point”
(which might be chosen to be the same from iteration to iteration). If the
problem does admit a k-dimensional active subspace, the n− k-dimensional
level sets of f (including the affine space(s) of global optimizers) intersect any
k-dimensional random subspace with probability one — though we would
typically prefer to avoid the possibility of optimizing too far away from the
origin, which is one reason for possibly solving with more than one random
projection.

An important point about this implicit approach is that the projected
subproblems do not necessarily require gradient information, and can be
solved (for k sufficiently small) using derivative-free methods.

6 Beyond subspaces
In the past couple years, there have been a few papers that push beyond
the idea of finding an active linear subspace to finding a nonlinear version
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(referred to by one group of authors2 as an active manifold, and another3 as a
kernel-based active subspace). In both cases, instead of writing f(x) ≈ g(Ax)
one writes f(x) ≈ g(ϕ(x)) where ϕ : Rn → Rk. In the case of the kernel-based
active subspace, ϕ is learned by lifting the original x vector into a higher-
dimensional (redundant) feature space, then applying the active subspace
technique there. We will see this idea in different guises next week. For the
active manifolds idea, we refer to the paper.

One of the distinct advantages of the active subspace approach is that
it’s easy to analytically write down the (approximate) level sets. This is
significantly more complicated in the nonlinear variants of the problem.

2Active Manifolds: a non-linear analogue to Active Subspaces, Bridges Gruber, Felder,
Verma, Hoff, 2019

3Kernel-based Active Subspaces with application to CFD parametric problems using
Discontinuous Galerkin method, Romor, Tezzele, Lario, Rozza, 2020
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