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1 Introduction

Our goal in the coming three weeks largely involves approximating functions
f:Q CR™— R™ by some “simple” family of functions (particularly polyno-
mials and combinations of translates of a radial basis function). If we want
to prove something, we will usually assume 2 is compact and f has some
degree of smoothness or regularity.

Approximation of continuous functions f : [a,b] — R plays a key role in
most introductions to analysis, whether classical or numerical. On the clas-
sical side, we have the Weierstrass theorem, stating that every such function
can be uniformly approximated by a polynomial; equivalently,
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where in this setting |||l = maxp, ) [u(z)|. Work by Jackson and Bernstein
made Weierstrass’s results more precise, connecting the degree of smoothness
to the polynomial degree required to achieve a given accuracy. These types
of results are generally referred to as constructive function theory, and are
well described in now-classic books by Akhieser and by Rivlin.

In numerical analysis, most students are first exposed to function ap-
proximation in discussions of polynomial interpolation: given function values
Yo, - - -, Yq at nodes xo, ..., zq, find a polynomial p € P; (i.e. a polynomial
with degree at most d) such that p(z;) = y; for j = 0,...,d. The study of
polynomial interpolation stands on two legs: on the computational side, one
needs a representation of the interpolating polynomial that can be computed
(and evaluated at new points) quickly and without numerical instability; and
on the theoretical side, one needs an understanding of how well polynomial
interpolation approximates a target function y = f(x) when f has some
known smoothness. The theory and computational practice come together
in the design of adaptive approximation algorithms; the Chebfun system is
a modern instance of tying these threads thoroughly together.

Alas, approximating univariate functions by polynomials is not enough
for our purposes, and things immediately become more complicated when
we move to higher-dimensional spaces. When we go beyond one space di-
mension, we can no longer always uniquely define an interpolant from an
n+ 1-dimensional linear space of functions with samples at n+ 1 data points;
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we need an additional condition in order to ensure the problem is well-posed
(the famous Mairhuber-Curtis theorem). We can get around this issue by
constraining the location of the sample points or by choosing a method that
goes beyond taking approximants from a fixed linear space. At a computa-
tional level, high-dimensional approximation suffers from the “curse of di-
mensionality”: if all we have is a fixed amount of smoothness, the number
of data points required to reach a target accuracy tends to grow exponen-
tially in the dimension of the space. Therefore, we tend to seek methods that
effectively lower the problem dimension, as we discuss in the coming week.

2 A concrete error bound

Some of this lecture will be rather abstract. In order to ground ourselves, let’s
start with a very concrete problem. Consider n + 1 points zg,...,x, € R”
with associated function values y; = f(x;) € R. Assuming f has bounded
second derivatives, how can we bound |f(z) — p(z)| where p(x) = Tz +d is
the linear interpolant through the data points?

Even in this simple case, we need an extra hypothesis to make sense of
the problem; the system of equations
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should not be singular. Partial Gaussian elimination gives that this is equiv-

alent to the condition that x1 — xg,...,x, — xg be a basis for R".
Assuming that this system is nonsingular, we can evaluate p(z) at a given

target point x by either solving the linear system for the coefficients ¢ and d

or solving the system
o 1 ... Tp w— X
1 1 ...z, |1

and then evaluating p(z) = w’y. If z is in the convex hull of the z;, then
the weights w are all non-negative.

This latter form is convenient for error analysis, together with the trick
of writing each of the function evaluations in terms of a Taylor expansion
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about x; if we let z; = x; — x, then

Flas) = £(@) + f@)z + 520 1162

where ¢; is some point on the line segment connecting x and x;. Substituting
in, we have

1
p(r) = Z w; f(z) + Z w; f(z)z; + 5 Z wjijf”(fj)zj;
J J J
and from the defining equations for w, we have that
ijzl, Zw]’Zj:O,
J J
so that we are left with
1
p(o) = fl2) = 5 ) _wi 1(&)%
J
Therefore, if || f”|| < M uniformly, we have
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If x is in the convex hull of the data locations, we have that the weights
are all positive and sum to one, and the distances ||z;|| are bounded by the
maximum edge length d = maxy ||z — x¢||, so that

(o) — [ ()] < M

where d is the maximum edge length ||z; — z;||. In fact, we can tighten the
constant somewhat, though not enormously.

There are a few things to take away from this concrete example (apart
from the error bound, which is useful in its own right):

o We need a hypothesis on the points at the outset to ensure that we can
solve the interpolation system (this property of the points is sometimes
called well-poisedness for interpolation).
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» There are multiple ways of formulating the interpolation problem (solve
for the coefficients in an affine function, solve for weights associated
with a given point).

o The fact that the method exactly reconstructs linear functions played
an important (if implicit) role in our error analysis.

Let’s now consider how we would tackle something like this in a more abstract
setting.

3 Approximation from a fixed space

Consider a Banach space F (a complete, normed vector space) containing a
target function f, and suppose we seek to approximate f by some function
v € V where V C F is a finite-dimensional subspace. We now have two
distinct questions:

e Does V contain a good approximation to the target function?
o If a good approximation exists, how can it be found?

There are several different ways that we might choose a good approximation,
including minimizing a squared error (in the case that F is a Hilbert space);
including interpolating at a set of points; forcing certain linear functionals of
the error to be zero (a Petrov-Galerkin approach); minimizing a (weighted)
squared error at a larger set of sample points; or minimizing the maximum
error over a large set of points (leading to a so-called Chebyshev optimization
problem).

For the moment, we consider approximation schemes that are linear in
f and are exact on V. This includes all of the schemes mentioned above
except the last (Chebyshev optimization leads to a nonlinear scheme). In
these methods, we approximate f by Pf where P is a linear operator with
range V and PV = V. These two conditions imply that the approximation
operator P is a projection, i.e. P2 = P. We also have an associated error
projection I — P. Now, note that for any v € V, we have

If = Pfl =1 =P)(f =)l <= PlILf =l

and therefore
I =PI < |11~ Pl ing If o]
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Hence, approximation via f is quasi-optimal, yielding an approximation within
a factor of ||I — PJ| of the best possible approximation within the space.

Making this a little more concrete, suppose we use the max norm on 2,
ie.

[flloc = sup | f(2)].
€N

Then ||/ —Plloo < 14| P||s and || P||« is the maximum over € of the so-called

Lebesque function

Az) = Jvj()]
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where |v;(z)| are the so-called cardinal functions (or Lagrange functions) for
which 'Uj(iL'Z') = 5”

4 Kolmogorov n-widths and convergence rates

The quasi-optimality framework described above only helps with half of our
problem. We want an approximation within a constant factor of the best
thing possible; we also want the best thing possible to be good! This is an
instance of the consistency-stability paradigm common in numerical analysis:
stability gives a small quasi-optimality constant, consistency means that the
best possible approximation has a small error. Having briefly described the
stability piece, let’s now talk about accuracy.

Let K be a (usually compact) subset of . When F has a norm (or
quasi-norm) that measures smoothness, the set K may be associated with a
unit ball of functions up to a prescribed smoothness. In our concrete case
described before, for instance, we might consider the set of all functions where
the second derivative was pointwise bounded in norm by some constant M.
The Kolmogorov n-width describes the worst-case approximation error for
functions from K under a best-case choice of n-dimensional approximation
spaces of functions; that is,

d,(K):= inf E
)= i SR U V)

where E(f,V),) is the minimum error norm for approximating f by elements
of V,,. In general, these n-widths decay as O(n~%) for some « associated with
smoothness of the functions in K.
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