Bindel, Spring 2021 Numerics for Data Science

2021-03-23

1 Introduction

Dimensionality reduction involves taking a data set {z'}"_; and finding cor-
responding vectors {y'}" ; in some lower-dimensional space so as to preserve
“important” properties of the data set. Natural desiderata for such a map-
ping might include:

Preserving pairwise distances (isometry)

Preserving angles locally (conformality)

Preserving neighborhood structure

Clustering points with similar class labels

A “nice to have” property is that there is a mapping y = f(z) that accom-
plishes this goal and is learned in a somewhat explicit form.

So far, we have implicitly studied several linear dimensionality reduction
methods in which the mapping from z +— y is a linear (or possibly affine)
map. Examples include PCA and Fisher LDA embeddings, and we can also
see some other matrix factorizations in a similar light. These methods are
quite powerful, and are backed by standard linear algebra types of tools, at
least for the standard loss functions we have used. There is much more to
say; for instance, we have not discussed interesting topics like robust PCA,
though we have seen many of the numerical methods that are ingredients for
solving these problems

However, sometimes the restriction to only using linear maps is quite
severe. For this reason, in this lecture, we consider nonlinear dimensionality
reduction techniques. We will return to the topic later in specific contexts
(kernel PCA when we talk about kernel methods, Laplacian eigenmaps when
we talk about graph-based dimensionality reduction and clustering). But for
now, we introduce a handful of influential dimensionality reduction methods
that we will not have as much time to discuss later. As in the rest of the
class, our goal is partly to highlight the idea of the schemes, but just as
much to highlight interesting numerical methods that go into their efficient
implementation: Nystrom approximation, connections to the SVD, clever
uses of sparsity, fast multipole approximations, and so forth.

Bindel, Spring 2021 Numerics for Data Science

2 PCA and multi-dimensional scaling

We start with the idea of multi-dimensional scaling (MDS), which attempts
to construct coordinates y® such that the distances ||y* — 3’|| approximate
some known “dissimilarity measure” between z* and 2/. We observe that for

2 i N2 (]2 i g (12
diy = [l = 277 = [[="]]" = 2{a", 27) + [|l27]]",
we can write the squared distance matrix D® as
D® =@l _oXTX e(r®)T

where e is a vector of all ones and (2), = ||z°||*>. Let P denote a centering

transformation
1

P=1——ee,
n
i.e. P subtracts the mean of a vector from each component. Note that Pe = 0,
and XP = X is the matrix with columns 2/ — Z where Z is the mean of the
columns. Therefore, applying P to D® on the left and right eliminates the
rank-one terms; and scaling by —1/2 gives us

1 =
B= —§PD(2)P = XTX.

Thus, B is a Gram matrix for the centered data matrix, abd we can
recover X (up to an orthogonal transformation) via the truncated eigende-

composition of B:
X = QA

for some orthogonal matrix @ € O(d). If we want a lower-dimensional em-
bedding that optimally approximates the Gram matrix, we need only take
fewer eigenvectors. Note that the eigenvalues and vectors of X7 X are the
singular vectors and (squared) singular values of X. Thus, MDS when Eu-
clidean distance is used for the dissimilarity is equivalent to PCA.

There are other forms of multi-dimensional scaling that use other objec-
tives in fitting to a dissimiliarity matrix. For example, metric MDS minimizes

the “stress”

> (di = lly' = 1),

i#]
and other forms of MDS (Sammon mapping, Sammon with Bregman diver-
gences, ordinal MDS) use yet other measures.

Bindel, Spring 2021 Numerics for Data Science

3 Nystrom and landmarks

We have seen before that there are other ways to represent a low-rank matrix
than with an SVD. In particular, we can construct a representation with a
subset of rows and columns of the matrix. We have referred to this as the
CUR decomposition in general; in the symmetric case, it is often known as
the Nystrom approximation. That is, if A is a square symmetric matrix
with rank 7, then there is a symmetric permutation such that A;; € R™" is
invertible and

An AL [Au]
A= {A; Aiﬂ - [Aﬂ A [An A

Moreover, if we take the economy QR decomposition

All _
|:A21:| - QRa

then we can decompose RA;;' RT = UAUT and get the (truncated) eigende-
composition

A= (QU)AQU)".

What does this have to do with MDS? Consider the case now where we
use the Nystrom approximation of the squared distance matrix D:

| Dn _1 | D1
e
1 —1 7T
B=--2ZD;\Z
2

Dy
=P .
]

Centering gives

where

Taking the QR decomposition allows us to approximate the largest eigenvec-
tors as before.

The selected columns in the Nystrom scheme correspond to “landmarks”
in the multi-dimensional scaling setting. The idea is that we never need
to know the distance between arbitrary points; we only need the distances
between those points and a set of landmarks. If we choose ¢ landmarks, the

Bindel, Spring 2021 Numerics for Data Science

time required for this method is O(ng?) rather than O(n?), and we only need
to evaluate (and store) ng distances.

The process also gives us an affine map that we can apply to embed new
points in the lower-dimensional space after training; that is

1. Compute the vector d € R? of distances from the new point to each
landmark, and let z = d — d be the “centered” version that comes from
subtracting the mean distances to the landmarks among the original
training data.

2. The k-dimensional embedding vector y is now given by y = A,:l/ U'R™ T2

4 Isomap

Preserving geometry does not always mean preserving distances in Euclidean
space. The Isomap algorithm is intended for the case when the 2 data
points lie close to some lower-dimensional manifold embedded in a high-
dimensional Euclidean space. Rather than looking at Euclidean distances
between points, Isomap looks at a matrix of (approximate) geodesic dis-
tances for the manifold. Unfortunately, because the manifold is implicit, the
geodesic distances cannot be computed directly, but are approximated by
shortest paths through a network connecting nearest neighbors, either tak-
ing a fixed number of nearest neighbors per node (k-Isomap) or taking all
neighbors within some radius of each node (e-Isomap).

There are many clever ideas for finding nearest neighbors, which we will
not go into here. The brute force approach requires O(n?) time. Once the
nearest neighbor graph is computed, however, we must compute all short-
est paths through the graph, a task that generally takes O(n?) time using
the Floyd-Warshall algorithm. Computing a full eigendecomposition of the
resulting (centered and squared) distance matrix takes another O(n?) time.
Fortunately, the landmark approach for MDS applies equally well here, and
requires only that we find the distances from ¢ landmarks to all other nodes
(O(gnlogn) time via Dijkstra’s algorithm), after which our linear algebra
costs are O(ng?).

The Isomap algorithm is a beautiful and useful idea, but with some im-
portant limitations. Inherent in the setup is the idea that there is a good
embedding of the manifold in a low-dimensional Euclidean space; but the ex-
istence of such an embedding depends on the topology of the manifold. The

Bindel, Spring 2021 Numerics for Data Science

sphere surface is a two-dimensional manifold that is easily represented in R3,
for example, but cannot be continuously embedded into R?. Isomap may
also do poorly on manifolds with high Gaussian curvature, or on manifolds
that are not very densely sampled.

5 LLE

A popular alternative to Isomap is the locally linear embedding (LLE). Simi-
lar to Isomap, the LLE algorithm starts by building a graph between points in
the data set and nearby neighbors. For each node j, one seeks to find weights
w;; to approximately reconstruct 27 from the neighbors by minimizing

1> wiwi; — >

ieN;

subject to the constraint), N, Wij = 1 (necessary for translational invari-
ance). Computationally, this step involves solving a large number of inde-
pendent small equality-constrained least squares problems, one for each node.
But it can equivalently be seen as finding a weight matrix W with a given
sparsity that minimizes

(7 = W)X = X (I = W) (I - W)X.
Once the weights have been computed, one seeks a matrix Y to minimize
(7 = W)Y I3

subject to the constraints that YY7T = %I and Ye = 0 (i.e. the Y coordinate
system is centered). This gives that Y is n~'/2 times the singular vectors
Un_k, - - -, Un_1 associated with the smallest singular values of I — W apart
from the null vector e. Because the weight matrix is sparse, these smallest
singular values can be computed using standard sparse eigensolver iterations
such as the Lanczos method.

6 t-SNE

The t-distributed Stochastic Neighbor Embedding (-SNE) is a popular method
for mapping high-dimensional data to very low (usually 2) dimensional repre-
sentations for visualization. Given a data point 2%, one defines a conditional

Bindel, Spring 2021 Numerics for Data Science

probability p;; that 27 would appear as its “neighbor” proportional to

" — =71
Pjli 0 eXp { =75 5

(2

with the diagonal probabilities set to zero. To simplify things somewhat, we
work with the symmetrized conditional probabilities p;; = (pij; + pji)/(2n).
In the lower-dimensional y space, one makes a similar construction, but with
a heavier-tailed t-distribution:

g < (L+ |y — /[P~

The embedding is then chosen so that the KL-divergence

Dij
C= Zpij log ~
Y]

R
qij

which measures the distance between the joint P distribution in the high-
dimensional space and the joint () distribution in the low-dimensional space,
is as small as possible.

Though the t-SNE paper starts from the stochastic motivation associated
with the earlier SNE method (like t-SNE, but using a Gaussian distribution
in the low-dimensional space as well), the authors describe some of the mo-
tivation in very mechanical terms. The original SNE method was subject
to the y points crowding too close together, and they note that t-SNE has
a “repulsive force” term that pushes them apart. The force interpretation
comes from treating the KL-divergence C' as a potential energy, in which
case the gradients

V€ =472 Z(pij - Qij)Qij(yi)
JF
are naturally seen as forces (where Z here is the normalization term 7 =
> k(L4 [lys — yi||*)~1). We can split this into a short-range attractive piece

> iy —)

J#
which only involves a local neighborhood because of the rapid decay of the
Gaussian in p;;; and a long-range repulsive piece

- Zqizj(yi —Yj)-

i

Bindel, Spring 2021 Numerics for Data Science

Though we cannot take advantage of sparsity in this long-range repulsion
term, we can take advantage of smoothness; that is, ¢;; ~ ¢ when [y* —
v < |ly* — ¥/|]. Thus, we can “clump together” all the terms that are
sufficiently far from a region in space. This is the same as the idea that
we can treat the gravity of the sun as a point mass from the perspective
of far-away bodies like the planets, and we can similarly approximate the
gravitational pull of distant galaxies as a single pull from a (tremendously
large but tremendously distant) center of mass. This is the idea underlying
tree codes like the famous Barnes-Hut algorithm. With more careful control
of the error, one gets the famous fast multipole method, which can also be
used in this setting. The same idea appears in fast algorithms for kernel
interpolation and Gaussian process regression in low-dimensional spaces, as
we will discuss in a few weeks.

7 Autoencoders

We will say relatively little about neural networks in this class, but it is
worth saying at least a few words about the idea of an autoencoder. As with
many things involving neural networks, autoencoders seem to work better in
practice than we know how to argue that they ought to.

The idea behind an autoencoder is that one seeks to train a neural network
with a “bottleneck” to approximate the identity. That is, we seek weight
vectors 01 and 02 for two halves of a feed-forward neural network so that

F(xi; ‘91; 92) = fdecode(fencode(wi; 01); 92) ~ xi’

where fencode maps from the high-dimensional input space to the outputs of
a low-dimensional “bottleneck” layer, and fgecode maps back up to the high-
dimensional space. The weights are trained by stochastic gradient descent on
a loss such as function >, (F(z") —a%)?. Variational autoencoders output not
just an intermediate feature vector, but the parameters for an intermediate
feature distribution (e.g. means and variances on each parameter). The gain
for this additional complexity is a tendency to favor smoother mappings.

	Introduction
	PCA and multi-dimensional scaling
	Nystrom and landmarks
	Isomap
	LLE
	t-SNE
	Autoencoders

