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1 Non-negative Matrix Factorization (NMF)

In the last lecture, we considered low rank approximations to data matrices.
We started with the “optimal” rank k approximation to A € R"™*™ via the
SVD, then moved on to approximations that represent A in terms of the
rows and columns of A rather than in terms of the left and right singular
vectors. We argued that while these latter factorizations may not minimize
the Frobenius norm of the error for a given rank, they are easier to interpret
because they are expressed in terms of the factors in the original data set.
We continue with our theme of finding interpretable factorizations today by
looking at non-negative matriz factorizations (NMF).

Let Ry denote the non-negative real numbers; for a non-negative data
matrix A € RT™", we seek

A~WH, where W € RT"* H € R,

Non-negative matrix factorizations are convenient because they express the
columns of A (the data) in terms of positively weighted sums of the columns
of W, which we interpret as “parts.” This type of decomposition into parts
makes sense in many different domains; for example:

Meaning of columns of A Meaning of columns of W
Word distributions for documents | Word distributions for topics
Pictures of faces Pictures of facial features
Connections to friends Communities

Spectra of chemical mixtures Spectra of component molecules

Unfortunately, non-negative matrix factorizations are generally much more
difficult to compute than the factorizations we considered in the last lecture.
There are three fundamental difficulties:

o We do not know how big k£ must be to get a “good” representation.
Compare this to ordinary factorization, where we can hope for error
bounds in terms of oj41, ..., Omin(m,n)-

o The optimization problem is non-convex, and there may generally be
many local minima. Again, compare this with the optimal approxima-
tion problem solved by singular value decomposition, which has saddle
points, but has no local minimizers that are not also global minimizers.
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o NMF is not incremental: the best rank k approximation may have
little to do with the best rank k + 1 approximation. Again, we can
compare with the unconstrained problem, for which the best rank k+1
approximation is a rank-one update to the best rank k approximation.

Faced with this hard optimization problem, we consider two tactics. Flirst,
we might seek efficient optimization methods that at least converge to a
local minimizer'; we will spend the first part of the lecture discussing this
approach. Second, we might seek common special cases where we can prove
something about the approximation. In particular, the NMF problem is much
more tractable when we make a separability assumption which is appropriate
in some applications.

2 Going with gradients

2.1 Projected gradient descent

We begin with the projected gradient descent algorithm for minimizing a func-
tion ¢ subject to simple constraints. Let P(z) be a projection function that
maps = to the nearest feasible point; in the case of a simple non-negativity
constraint, P(x) = [z], is the elementwise maximum of x and zero. The
projected gradient descent iteration is then

mk+1 —P (karl o akv(b(xk)) .

The convergence properties of projected gradient descent are similar to those
of the unprojected version: we can show reliable convergence for convex
(or locally convex) functions and sufficiently short step sizes, though ill-
conditioning may make the convergence slow.

In order to write the gradient for the NMF objective without descending
into a morass of indices, it is helpful to introduce the Frobenius inner product:
for matrices X,Y € R™*",

<X, Y>F = Z Yijlij = tI‘(YTX)

1,J

'Tn most cases, we can only show convergence to a stationary point, but we are likely
to converge to a minimizer for almost all initial guesses.
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The Frobenius inner product is the inner product associated with the Frobe-
nius norm: || X||%2 = (X, X)p, and we can apply the usual product rule for dif-
ferentiation to compute directional derivatives of (W, H) = ||A — W H||%./2
with respect to W and H:

5 =0 %<A—WH,A_WH>F
= (6(A-WH),A-WH)p
= —((0W)H,A=WH)p— (W(6H),A—WH)p.

We let R = A—W H, and use the fact that the trace of a product of matrices
is invariant under cyclic permutations of the matrices:
(SW)H,R)p = tr(H" (0W)"R) = tr((W)"RH™) = (W, RH")
(W(OH),R)p = tr((0H)"WTR) = (0H, W' R) .

Therefore, the projected gradient descent iteration for this problem is
new T
wrew = [W +aRH'],
new __ T
H™Y = [H +alW R} 4

where in the interest of legibility we have suppressed the iteration index on
the right hand side.

2.2 Multiplicative updates

One of the earliest and most popular NMF solvers is the multiplicative update
scheme of Lee and Seung. This has the form of a scaled gradient descent
iteration where we replace the uniform step size a; with a different (non-
negative) step size for each entry of W and H:

WY = [W+So (AH" —WHHT)]
H* =[H+5 60 (W'A-W'WH)

+
+ Y

where ® denotes elementwise multiplication. We similarly let @ to denote
elementwise division to define the nonnegative scaling matrices

S=Wo(WHH"), S =Ho(W'WH).
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With these choices, two of the terms in the summation cancel, so that

W' =S®(AH") =W o (WHH") ® (AH")
H* =5 o (WrA) =Ho (W'WH)® (WTA).

At each step of the Lee and Seung scheme, we scale the (non-negative) ele-
ments of W and H by non-negative factors, yielding a non-negative result.
There is no need for a non-negative projection because the step sizes are
chosen increasingly conservatively as elements of W and H approach zero.
But because the steps are very conservative, the Lee and Seung algorithm
may require a large number of steps to converge.

3 Coordinate descent

The (block) coordinate descent method (also known as block relaxation or
nonlinear Gauss-Seidel) for solving

minimize ¢(xq, X9, ..., x,) for z; €

involves repeatedly optimizing with respect to one coordinate at a time. In
the basic method, we iterate through each ¢ and compute

k+1 k+1 k+1 k k
Z; 1 )-

= argming ¢(y", .., 27,6 T, -, T

The individual subproblems are often simpler than the full problem. If each
subproblem has a unique solution (e.g. if each subproblem is strongly convex),
the iteration converges to a stationary point?; this is the situation for all the
iterations we will discuss.

3.1 Simple coordinate descent

Perhaps the simplest coordinate descent algorithm for NMF sweeps through
all entries of W and H. Let R = A — W H; then for the (i, j) coordinate of
W, we compute the update w;; = w;; + s where s minimizes the quadratic

1 L1 1
SIA— OV + seieD) Hlly = SIRIE = s{(ewe?), R ) e+ 5% e HI

2 For non-convex problems, we may converge to a saddle; as an example, consider
simple coordinate descent for ¢(z1,xs) = 27 + 4179 + 23.
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subject to the constraint that s > —w;;. The solution to this optimization is

(RHT), ) .

S = Imax <—ZUU, m

Therefore, the update for w;; is

(RHT),
S = max (—U)ij, W s Wij = Wij + S, Ri,: = Rz‘,: - SHj,:
A similar computation for the elements of H gives us the update formulas
(WTR),;
S = max (_hij7 (VVT—VV)i s hij = h@'j + S, R:,j = R:,j - SVV:,i.

Superficially, this looks much like projected gradient descent with scaled step
lengths. However, where in gradient descent (or the multiplicative updates
of Lee and Seung) the updates for all entries of W and H are independent,
in this coordinate descent algorithm we only have independence of updates
for a single column of W or a single row of H. This is a disadvantage for
efficient implementation.

3.2 HALS/RRI

The simple algorithm in the previous algorithm relaxed on each element of
W and H independently. In the hierarchical alternating least squares or rank-
one residual iteration, we treat the problem as consisting of 2k vector blocks,
one for each column of W and row of H. To update a column W. ; := W, ;+u,
we must solve the least squares problem

minimize ||R — uH,.||3 s.t. u > =W, ,

which is equivalent to solving the independent single variable least squares
problems
minimize ||R;. — uiHj,:Hg s.b. u; > —w;j.

The u; must satisfy the normal equations unless it hits the bound constraint;

thus,
R’L7H]1: (RHT>ZJ
u; = max | —w;;, ——= | = max | —w;;, ——=— | .
7 H;.H 7 (HHT);;

Thus, updating a column of W at a time is equivalent to updating each of
the elements in the column in sequence in scalar coordinate descent. The
same is true when we update row of H.
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3.3 ANLS

The alternating non-negative least squares (ANLS) iteration updates all of
W together, then all of H:

W = argming, ., [[A — WH|%
H = argminHZO “A - WHH%“

We can solve for each row of W (or column of H) independently by solving a
non-negative least squares problem. Unfortunately, these non-negative least
squares problems cannot be solved in a simple closed form!

The non-negative least squares problem has the general form

minimize ||Az — b||? such that = > 0;

it is a convex optimization problem that can be solved using any constrained
optimization solver. An old class of solvers for this problem is the active set
methods. To derive these methods, we partition the variables into a free set
7 and a constrained set 7, and rewrite the KKT equations in the form

ZL’I:ATIb :L’I>0
A?(AI—b)ZO IJZO

If the partitioning into Z and J is known, we can compute x via an ordinary
least squares solve. The difficult part is to figure out which variables are free!
The simplest approach is to guess Z and J and then iteratively improve the
guess by moving one variable at a time between the two sets as follows.
Starting from an initial non-negative guess x, Z, J, we

o Compute p = ATZb —x.

o Compute a new point x := z + ap where o < 1 is chosen to be as large
as possible subject to non-negativity of the new point.

o If @ < 1, we move the index for whatever component became zero from
the Z set to the J set and compute another step.

« Ifa=1and g7 = AL (Az —b) has any negative elements, we move the
index associated with the most negative element of r; from the J set
to the Z set and compute another step.
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o Otherwise, we have & = 1 and g7 > 0. In this case, the KK'T conditions
are satisfied, and we may terminate.

The problem with this approach is that we only change our guess at the free
variables by adding or removing one variable per iteration. If our initial guess
is not very good, it may take many iterations to converge. Alternate methods
are more aggressive about changing the free variable set (or, equivalently, the
active constraint set).

4 Separable NMF

In the general case, non-negative matrix factorization is a hard problem.
However, there are special cases where it becomes easier, and these are worth
exploring. In a separable problem, we can compute

I
IM"A = H;
)
that is, every row of A can be expressed as a positively-weighted combination
of k columns of A. Examples where we might see this include:

e In topic modeling, we might have “anchor words” that are primarily
associated with just one topic.

e In image decomposition, we might have “pure pixels” that are active
for just one part of an image.

e In chemometrics, we might see that a component molecule produces a
spike at a unique frequency that is not present for other components.

Assuming that this separability condition occurs, how are we to find the k
rows of A that go into H? What we will do is to compute the normalized ma-
trix A by scaling each row of A so that it sums to 1. With this normalization,
all rows of A are positively weighted combinations of the anchor rows where
the weights sum to 1; that is, if we view each row as a point in m-dimensional
space, then the anchor rows are points on the convex hull. As discussed in
the last lecture, we can find the convex hull with the pivoted QR algorithm.

ATl = QR.

Variants of this approach also work for nearly separable problems.
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