
Bindel, Spring 2021 Numerics for Data Science

2021-03-04

1 Some factorization tools
We generally seek to approximately factor a data matrix A ∈ Rm×n as

A ≈ LMR, L ∈ Rm×r,M ∈ Rr×r, R ∈ Rr×n.

In this view, we can think of R (or MR) as a map from the original attributes
to a smaller set of latent factors. Different factorization methods differ both
in the structural constraints on L, M , and R and on how the approximation
is chosen. For today, we will discuss:

• The symmetric eigendecomposition

A = QΛQT

where Q is an orthogonal matrix (QTQ = I) of eigenvectors and Λ is
the diagonal matrix of eigenvalues. We will also consider the decom-
position for the generalized problem, in which QTMQ = I where M is
a symmetric and positive definite matrix.

• The singular value decomposition

A = UΣV T

where U and V are orthogonal matrices (in the full version) or ma-
trices with orthonormal columns (in the economy version), and Σ is
the diagonal matrix of singular values. The SVD is a veritable Swiss
Army knife of matrix factorizations; we will use it on its own and as a
building block for other methods.

• The pivoted QR factorization

AΠ = QR

where Π is a permutation of the columns of A, Q is orthogonal, and
R is upper triangular. The permutation Π is chosen to guarantee that
the magnitude of the diagonal entries of R appear in descending order.
The pivoted QR factorization also has a geometric interpretation that
is useful in several settings.

Bindel, Spring 2021 Numerics for Data Science

• The interpolative decomposition (ID)

AΠ ≈ C
[
I T

]
where C is drawn from the columns of A and the entries of T are
bounded in size (no more than two). The factorization is exact when
A is low rank. In many cases, the columns in C are the columns that
would be chosen by pivoted QR factorization.

• The CUR factorization
A ≈ CUR

where C and R are drawn from the columns and rows of A.

The symmetric eigendecomposition and the SVD are both closely tied to
“nice” continuous optimization problems, and this connection allows us to
make very strong statements about them. In contrast, pivoted QR, ID, and
CUR involve discrete choices involving column and row selection, and it is
much more difficult to analyze the properties that arise from these discrete
choices. At the same time, these latter factorizations are often interpretable
in a way that the eigendecomposition and SVD are not.

2 The symmetric eigenvalue problem
Among their many other uses, in data analysis tasks a real symmetric matrix
A often represent interactions between unordered pairs of objects. We use
them to represent edges in undirected graphs, similarities between objects,
covariances of pairs of random variables, counts of pairs of words that occur
together across sets of documents, and in many other settings.

From the linear algebra perspective, a symmetric matrix also represents
a quadratic form, i.e. a purely quadratic function of many variables. For a
concrete vector space, we write this as

ϕ(x) =
1

2
xTAx.

We say ϕ (and A) is positive definite if ϕ is positive for any nonzero argument;
ϕ is positive semidefinite if ϕ is always non-negative. Any positive semidefi-
nite matrix can be represented (not uniquely) as a Gram matrix A = BTB;
in this case, we have ϕ(x) = ∥Bx∥2/2. If A is a positive semidefinite matrix

Bindel, Spring 2021 Numerics for Data Science

that represents similarities between objects, we can think of the rows of the
matrix B as feature vectors for different objects, so that the similarity be-
tween objects is encoded as the dot product between their feature vectors.
This is a particularly useful perspective if we want to use matrix factorization
methods to cluster similar objects.

A real symmetric matrix is always diagonalizable with real eigenvalues,
and has an orthonormal basis of eigenvectors q1, . . . , qn, so that we can write
the eigendecomposition

A = QΛQT .

Broadly speaking, I tend to distinguish between two related perspectives on
eigenvalues. The first is the linear map perspective: A represents an operator
mapping a space to itself, and an eigenvector corresponds to an invariant
direction for the operator; that is, we read the decomposition as

Aqi = qiλi.

The second perspective is the quadratic form perspective: if A is a symmetric
matrix representing a quadratic form, then we read the decomposition as

(Qx)TA(Qx) =
n∑

i=1

λix
2
i

xTAx =
n∑

i=1

λi(q
T
i x)

2.

We can write the eigenvalues and eigenvectors as the critical points for the
objective function xTAx subject to ∥x∥2 = 1; in terms of the Lagrangian

L(x, λ) =
1

2
xTAx− λ

2
(xTx− 1),

we have the KKT conditions

Ax− λx = 0

∥x∥2 − 1 = 0

The eigenvalues and eigenvectors are also the stationary values and vectors
for the Rayleigh quotient

ρA(x) =
xTAx

xTx
.

Bindel, Spring 2021 Numerics for Data Science

If we differentiate xTAx− ρAx
Tx = 0, we have

2δxT (Ax− ρAx)− δρa(x
Tx) = 0

which means that setting δρA = 0 implies

Ax− ρA(x)x = 0.

The largest eigenvalue is the maximum of the Rayleigh quotient, and the
smallest eigenvalue is the minimum of the Rayleigh quotient.

If M is symmetric and positive definite, it defines an inner product and
an associated Euclidean norm:

⟨x, y⟩M = yTMx and ∥x∥2M = xTMx = ⟨x, x, ⟩M .

If A is a symmetric matrix and M is symmetric and positive definite, we
might also consider minimizing the quadratic form for A subject to the con-
straint ∥x∥M = 1. This gives us the KKT equations

Ax−Mxλ = 0

∥x∥2M − 1 = 0.

This is an example of a generalized eigenvalue problem for the matrix pencil
(A,M). We can write down a full eigendecomposition for the generalized
problem as

UTAU = Λ where UTMU = I.

The eigenvalues of the pencil (A,M) are the same as those of M−1A or
B−TAB−1 for any B such that M = BTB. We have already described
one example where this type of generalized decomposition is useful when we
discussed “fisherfaces” in the last lecture.

The optimization problem associated with the symmetric eigenvalue prob-
lem is not convex – far from it! But it is a nice optimization problem nonethe-
less. It has saddle points, but the only local minima and maxima are also
global minima and maxima, so even standard optimizers are not prone to get-
ting stuck in a local minimum. But there are also specialized iterations for
solving the symmetric eigenvalue problem that are very efficient. While the
details of these methods are a topic for a different class, it is worth sketching
just a few ideas in order to understand the different types of solvers available
and their complexities:

Bindel, Spring 2021 Numerics for Data Science

• Most of the direct solvers1 for the symmetric eigenvalue problem go
through two stages. First, we compute

A = UTUT

where U is an orthogonal matrix and T is tridiagonal. Then we com-
pute the eigenvalues and eigenvectors of the resulting tridiagonal ma-
trix. The asymptotically fastest of the tridiagonal eigenvalue solvers
(the “grail” code) takes O(n) time to find all eigenvalues and O(n2) to
find all eigenvectors; but the cost of reducing A to a tridiagonal form
is O(n3). When we call eig in MATLAB, or related solvers in other
languages, this is the algorithm we use.

• There are also several iterative methods for computing a few eigenval-
ues and eigenvectors of a symmetric matrix. The simplest methods
are the power iteration and subspace iteration, which you may have
seen in a previous class; unfortunately, these methods do not converge
very quickly. The Lanczos method is the main workhorse of sparse
eigenvalue solvers, and the method you will use if you call eigs in
MATLAB, or related subroutines in other languages. Like power itera-
tion and subspace iteration, the Lanczos method requires only matrix-
vector multiplications, and so it can be very efficient when we want to
compute matrix-vector products.

The Lanczos method is good at computing a few of the largest and small-
est eigenvalues of a symmetric matrix (the extremal eigenvalues), together
with the corresponding eigenvectors. It is not as good at computing interior
eigenvalues without some help, usually in the form of a spectral transforma-
tion. But for many applications in data science, we are content to look at
the extremal eigenvalues and vectors, so we will not discuss the more difficult
interior case any further.

3 The singular value decomposition
The singular value decomposition of A ∈ Rm×n is

A = UΣV T

1This is a bit of a fib in that all eigenvalue solvers are iterative. We say these methods
are “direct” because we only need a constant number of iterations per eigenvalue to find
the eigenvalues to nearly machine precision.

Bindel, Spring 2021 Numerics for Data Science

where U and V have orthonormal columns and Σ has the non-negative sin-
gular values of A in descending order on the diagonal (and zeros elsewhere).
We sometimes distinguish between the “full” SVD in which U and V are
square and Σ is the same size as A; and the “economy” SVD, in which Σ is
square and one of U or V is the same size as A.

Like the symmetric eigenvalue decomposition, the singular value decom-
position can be viewed in terms of an associated optimization problem:

minimize ∥Av∥2 s.t. ∥v∥2 = 1.

We change nothing by squaring the norms to get

minimize ∥Av∥22 s.t. ∥v∥22 = 1,

but we can rewrite this as

minimize vTATAv s.t. vTv = 1,

which we recognize as exactly the optimization formulation of the maximum
eigenvalue (and eigenvector) of ATA. More generally, we have

ATA = V Σ2V T .

where the eigenvectors of ATA are the constrained critical points for the
optimization problem and the (non-negative) eigenvalues in Σ2 are the cor-
responding eigenvectors. Having computed the vectors V , we write

AV = UΣ

where we know the columns of U each have unit Euclidean norm. To see
that the columns of U are actually orthonormal, we write

AAT = AV V TAT = UΣ2UT .

And this is exactly the eigenvalue decomposition of AAT !
We say a function f : Rm×n → R is orthogonally invariant (or unitarily

invariant2 if f(Q1AQ2) = f(A) for any orthogonal matrices Q1 and Q2. Any
unitarily invariant function can be written in terms of the singular values of
A. Among the most important unitarily invariant functions are the Ky-Fan
norms, which are just the ℓp norms of the vector of singular values. We
generally only care about three of these norms:

2Unitarily invariant covers the complex case

Bindel, Spring 2021 Numerics for Data Science

• The operator 2-norm (or spectral norm) is ∥A∥2 = σ1; this is the Ky-
Fan norm for p = ∞.

• The Frobenius norm satisfies ∥A∥2F =
∑

i σ
2
i ; that is, ∥A∥F is the Ky-

Fan norm for p = 2.

• The nuclear norm satisfies ∥A∥∗ =
∑

i σi; that is, ∥A∥∗ is the Ky-Fan
norm for p = 1. We will see more of this norm when we talk about
matrix completion on Friday.

The Eckart-Young theorem tells us that the best rank k approximation to A
in the spectral norm or the Frobenius norm is the truncated singular value
decomposition. In fact, the theorem holds for any of the Ky-Fan norms (so
it is true in the nuclear norm as well).

The singular value decomposition goes by many names and has many
close relatives. It is sometimes called the proper orthogonal decomposition of a
data matrix; in statistics, it is the basis for principal component analysis; and
in the study of stochastic processes, it is the Karhuenen-Loève decomposition.
But in some contexts, the SVD is not applied directly to our data matrix A,
but is instead applied to a transformed matrix. For example, if the columns
of A represent samples of different random variables (and the rows represent
experiments), we would typically look at the SVD of the centered matrix
A − eµT where µ is the vector of column means and e is the vector of all
ones. And in other settings, we might look at the matrix of z-scores, which are
obtained by normalizing the Euclidean lengths of the vectors of the centered
matrix.

4 Pivoted QR and pivoted Cholesky
The SVD provides optimal low-rank approximations to data matrices, but
those approximations are not particularly easy to interpret. We therefore
turn now to low-rank factorizations in which the factors are formed from
subsets of the columns or rows of the data matrix.

We described the pivoted QR decomposition briefly in our discussion of
least squares. The idea in pivoted QR is to permute the columns of the data
matrix so that the diagonal entries of the QR factorization of the pivoted
matrix appear in descending magnitude, i.e.

AΠ = QR, rii ≥ ri+1,i+1 for all i.

Bindel, Spring 2021 Numerics for Data Science

The column order is computed in a greedy fashion as follows. At the first
step of the iteration, we choose the column of A with the largest Euclidean
norm; we then scale it by the norm r11 in order to get the first column of Q:

AΠ:,1 = q1r11.

Next, we find the column of A with the largest component orthogonal to q1,
and write it as

AΠ:,2 = q1r12 + q2r22

where r12 is the extent to which the vector projects onto q1, q2 is the direction
of the residual component orthogonal to q1, and r22 is the magnitude of that
second component. And we proceed in a similar fashion until we run out of
columns or until all the remaining residuals are tiny.

Though we have described this decomposition in terms of explicit orthog-
onalizations at each step (as in the Gram-Schmidt procedure), in practice we
would usually use an alternate algorithm based on orthogonal transforma-
tions. However, the algorithm we have described is useful for reasoning about
a special property of the algorithm: the columns it selects are all on the con-
vex hull of the set of columns of A. In general, for any vector u, the column
for which |uTA| is largest will lie on the convex hull of the columns of A; and
by design, qTi AΠ = Ri,: has its largest entry on the diagonal. This fact is
key to the use of pivoted QR in some algorithms for separable non-negative
matrix factorization, as we will discuss next time.

Closely related to the pivoted QR algorithm is the pivoted Cholesky al-
gorithm: for a positive semi-definite matrix A, pivoted Cholesky computes

ΠTAΠ = RTR

where the diagonal entries of R have descending magnitude. Like pivoted
QR, pivoted Cholesky is a greedy algorithm, and at each step it chooses the
next pivot row/column based on the magnitude of a “residual” diagonal3. In
exact arithmetic, pivoted Cholesky on a Gram matrix BTB computes the
same permutation and R factor as pivoted QR on B.

3This is really the diagonal of the Schur complement, for those of you who may have
seen Schur complements in a discussion of Gaussian elimination in an earlier class.

Bindel, Spring 2021 Numerics for Data Science

5 Interpolative decomposition and CUR
An interpolative decomposition is a decomposition of the form

AΠ ≈ C
[
I T

]
where C is a subset of the columns of A. One way to get the interpolative
decomposition is via truncated pivoted QR; is we write

AΠ ≈ Q
[
R1 R2

]
where R1 ∈ Rk×k is the leading submatrix in the rectangular R factor, then

AΠ = QR1

[
I R−1

1 R2

]
= C

[
I T

]
Unfortunately, if we only use truncated pivoted QR, we cannot guarantee that
we are very close to the best rank k approximation; nor can we guarantee that
the entries of T are nice. It is possible to show that there is some permutation
such that the entries of T are at most 2 in magnitude, the singular values
of

[
I T

]
lie between 1 and 1 +

√
k(n− k), and the approximation error is

within a factor of 1+
√

k(n− k) of the best possible. But pivoted QR might
not find the best choice. Fortunately, we can get close to optimal by either a
post-processing algorithm that iteratively swaps new columns for the original
selection of columns in order to reduce the size of elements in T ; or we can
use randomized algorithms.

In the interpolative decomposition, we choose a subset of the columns of
A as the basis for our approximation. In the CUR decomposition, we choose
both columns and rows, i.e.

A ≈ CUR

where C and R are drawn from the rows and columns of A. Given a choice
of C and R, we find the optimal choice of U by least squares:

U = C†AR†.

Again, though, we have a problem: how should we select the columns and
rows to use? A simple approach is to run pivoted QR on both the rows and
columns, potentially with “swapping” algorithms of the type used in ID. An
alternative approach is to choose rows and columns based on a randomized
scheme using approximate “leverage scores” to determine the importance of
choosing a given column or row for the final factorization.

	Some factorization tools
	The symmetric eigenvalue problem
	The singular value decomposition
	Pivoted QR and pivoted Cholesky
	Interpolative decomposition and CUR

