
Bindel, Spring 2021 Numerics for Data Science

2021-03-02

1 Introduction
Last week, we considered least squares and related regression models. In
these models, we want to predict some dependent variable Y (also called an
outcome variable) as a function of some independent variables X (also called
features, regressors, or explanatory variables). In the simplest case, we look
for a linear prediction:

Y ≈ Xw

where X is a row vector of features and w is a column vector of weights.
We can make the model a little more expressive with a linear prediction in a
higher-dimensional space:

Y ≈ ψ(X)w

where ψ is a (nonlinear) feature map from the original vector of dependent
variables to a new, expanded set of variables1. In either case, we choose w by
minimizing a sum of loss functions over examples drawn from a population,
maybe together with a regularization term. For the least squares loss func-
tion and some standard regularizers, we can solve the resulting optimization
problem using factorization methods from numerical linear algebra.

In some cases, though, the distinction between explanatory and output
variables is not clear. Sometimes we may know different subsets of the vari-
ables for each experiment, and we want to fill in the rest. Or we may know all
the variables in our experiment, and want to look for relationships between
them rather than trying to make predictions. Or we might want to use the
attributes associated with different objects not for prediction, but to cluster
the objects, or to find outliers. Remarkably, we can view these tasks as well
through the lens of matrix factorization.

1We did not talk about feature maps yet in this class. But many of you will have seen
feature maps and “the kernel trick” in a machine learning class, and you are implicitly
using feature maps in the polynomial fitting homework problem from last week. We will
discuss these ideas in more detail next week when we discuss function approximation.

Bindel, Spring 2021 Numerics for Data Science

2 Matrix factorizations and latent variables
We can use matrices to encode many types of data: images, graphs, user
preferences, and distributions of jointly distributed random variables are but
a few. Often, as in our linear regression examples, the rows of the matrix
represent objects or experiments and the columns represent associated at-
tributes. In other cases, as when encoding a graph, both rows and columns
represent objects, and the entries of the matrix represent pairwise interac-
tions. Factoring these data matrices can help us compress and denoise data,
separate effects of different factors, find similarities between objects, or fill
in missing data.

We generally seek to approximately factor a data matrix A ∈ Rm×n as

A ≈ LMR, L ∈ Rm×r,M ∈ Rr×r, R ∈ Rr×n.

In this view, we can think of R (or MR) as a map from the original attributes
to a smaller set of latent factors. Different factorization methods differ both
in the structural constraints on L, M , and R and on how the approximation
is chosen.

It is worth being a little careful in how we think of these factorizations!
In most of linear algebra, we are interested in a matrix as a representation of
a linear map or a quadratic form with respect to some particular basis — but
we have a rich set of bases we can choose. For data analysis, though, we may
want to restrict the bases we consider for the sake of interpretability. For
example, if we want to choose as our latent factors a subset of the original
factors, or if we want to enforce non-negativity in the factors, we cannot
consider arbitrary changes of basis. Because of this, some of the methods
that we like best for interpretability are also the most difficult to compute,
as they involve an optimization problem that is combinatorial rather than
continuous in nature. We will see this issue repeatedly this week.

3 A gallery of examples
Before we turn to our first batch of factorization tools, let us first set the
stage with some concrete example applications.

Bindel, Spring 2021 Numerics for Data Science

3.1 Document search and latent semantic analysis
The vector space model was one of the early triumphs in the field of infor-
mation retrieval. In this model, documents are treated as “bags of words,”
and each document is represented as a vector of term frequencies, one for
each word in the vocabulary2. There are several different ways that the term
frequencies can be computed. We might use a binary indicator that says
whether a term is present or absent; raw count information or relative fre-
quency; or something affine or nonlinear (usually logarithmic) function of the
frequency. We also usually scale by the inverse document frequency, which
measures how common the term is across all documents. For example, a
common choice is

idf(t,D) = log
N

|documents in D containing t| .

The tf-idf matrix for term t and document d in corpus D is then

tfidf(t, d,D) = tf(t, d) · idf(t,D).

In latent semantic indexing, we approximate the tf-idf matrix by the
truncated singular value decomposition, and use the result to compute a
measure of query relevance. For example, suppose the tf-idf matrix was
arranged so that each row represents a term, and each column represents a
document. Let q be the tf-idf vector for the words in a query; for example,
it might be a vector of all zeros except for a one in the row indicating the
word “vehicle.” To find documents relative to the query, we would compute
the row vector

r = qTUkΣkV
T
k

and use ri as the relevance score. If we used the full SVD, the relevance
score would be exactly the row of the original tf-idf matrix associated with
the term “vehicle,” which might not include highly relevant documents in
which the word “vehicle” never appears but words like “boat” or “truck” or
“car” do appear. By using the SVD, we “blur out” the specific words and
get more semantically meaningful results.

The same idea of latent semantic indexing (LSI) or latent semantic analyis
(LSA) can apply in other settings as well. For example, similar ideas appear

2Very common words (stop words) and very rare words may be removed from the
vocabulary before taking counts.

Bindel, Spring 2021 Numerics for Data Science

in bibliometrics, where one wants to find highly relevant papers. But there
are also some real difficulties with LSI. One problem is that the nonlinear
mapping from term counts to matrix entries is not always easy to justify, and
an appropriate choice may require some experimentation. Another problem
with LSI is that it is generally impossible to assign any real meaning to the
factors.

3.2 k-means clustering as a matrix factorization
The k-means algorithm is a standard clustering method. Given m points in
n-dimensional space (which we think of as the rows in an m× n matrix A),
the k-means algorithm repeatedly updates a set of k representative vectors
r1, . . . , rk as follows:

• Assign each point in the data set to a cluster based on the nearest
representative vector (e.g. in Euclidean distance, though we could also
look at angles).

• Recompute each representative vector as the mean of all the points in
the cluster.

In matrix terms, the k-means algorithm computes the factorization

A ≈ LR

where the rows of R are the representative vectors rj and the rows of L
indicate cluster membership; that is, Lij is 1 if point i is in cluster j, and
zero otherwise. More particularly, the k-means method is an example of
an alternating iteration: first we optimize L while holding R fixed, then we
optimize R while holding L fixed. The optimization minimizes the least
squares error, and it generally converges to a local minimum in practice.

3.3 Eigenfaces, fisherfaces, and image analysis
The method of eigenfaces (or more generally eigenimages) has been used for
image recognition and classification since it was developed by Sirovich and
Kirby in 1980. The method essentially extracts a low-dimensional feature
representation of images of (gray scale) faces. The “eigenfaces” are computed
by principal component analysis on a collection of (gray scale, possibly low

Bindel, Spring 2021 Numerics for Data Science

resolution) face images, which are each laid out in the columns of a large
matrix. Classification is done by mapping a new face into a low-dimensional
space of eigenface features, then looking for the nearest neighbor in that
space. As with latent semantic indexing, the method works in part because
it captures identifying features while “blurring out” irrelevant fine details.

An alternative to eigenfaces is fisherfaces. Where eigenfaces are may
be written in terms of the eigenvalue decomposition of a covariance matrix,
fisherfaces come from Fisher’s linear discriminant analysis (LDA) approach.
Here we are interested in the largest eigenvales and vectors for the generalized
problem

Σbw = λΣw

where Σ is the common covariance for each class of (faces) examples in the
data set, and

Σb =
1

C

C∑
j=1

(µi − µ)(µi − µ)

is the between-class variability matrix. Here the µi are the class means and
µ is the mean of the class means. Unlike the eigenfaces technique, which is
agnostic to class labels on the images, the fisherfaces approach tailors the
choice of features to the classification problem at hand.

3.4 Collaborative filtering and the Netflix challenge
In 2009, Netflix awarded a $1M prize in a competition to beat the accuracy
of their in-house collaborative filtering algorithm to predict how users would
rate films. One of the key ideas in collaborative filtering is matrix completion.
The ratings are given in a giant matrix in which rows correspond to users
and columns correspond to movies. But as most users have not watched
most movies, only a relatively small number of the matrix entries are known.
The idea of matrix completion is to use those few entries to learn a low
rank factorization that matches the data and can be used to predict the
remaining entries. The intuition is that the low rank factorization represents
a mapping of users and movies into a low-dimensional space that captures
certain common attributes (e.g. how much action there is in the movie, or
whether the tone is light or serious).

Somewhat remarkably, one can prove that this type of reconstruction is
possible (and even reasonably straightforward to compute) under incoherence
assumptions that we will discuss on Friday.

Bindel, Spring 2021 Numerics for Data Science

3.5 Anchor words and interpretable topic models
In latent semantic indexing, we used the SVD to compute a low-dimensional
feature space to describe documents. However, that space is very difficult to
interpret. We would ideally like to summarize documents in terms of their
relation to meaningful topics; the same idea also applies to other collections,
such as lists of movies or songs that we might want to characterize by genre.
In topic modeling, we explain each document in terms of a distribution over
of a few stopic, where each topic is in turn a (sparse) distribution over words.
We generally insist that all these distribution vectors are properly stochas-
tic: that is, the entries should be non-negative, and they should sum to
one. Hence, topic modeling boils down to a probabilistic matrix factorization
problem, a particular type of non-negative matrix factorization (NMF).

As we will see later in the week, non-negative matrix factorizations are
generally hard to compute. However, the problem becomes much easier if
we assume that for each topic there is at least one word that is mostly
associated with that topic (and not with others). This word is called an
anchor word for the topic. We can find anchor words by applying the pivoted
QR algorithm, which we will turn to shortly, to a matrix of word-word co-
occurrence statistics. Once we have the anchor words, we can compute word-
topic distributions by solving non-negative least squares problems.

4 Some basic factorization tools
Next time, we will start our discussion of factorizations used in data analysis
with the symmetric eigenvalue problem. This is a useful building block on
its own, particularly for low rank approximation of symmetric matrices. It
is also useful as a prelude to another discussion of the singular value decom-
position (SVD), that Swiss Army knife of matrix factorizations. But both
the symmetric eigenvalue decomposition and the singular value decomposi-
tion involve a very flexible choice of bases; as we have mentioned, this is not
always ideal when we want an interpretable model. For interpretability, it is
helpful to talk again about pivoted QR and the closely-related interpolative
decomposition (ID), in which we choose a subset of the data matrix columns
as a basis for the column space. We will also mention the closely-related CUR
decomposition, in which both the left and right factors in our approximation
are drawn from the columns and rows of the data matrix.

	Introduction
	Matrix factorizations and latent variables
	A gallery of examples
	Document search and latent semantic analysis
	k-means clustering as a matrix factorization
	Eigenfaces, fisherfaces, and image analysis
	Collaborative filtering and the Netflix challenge
	Anchor words and interpretable topic models

	Some basic factorization tools

