Bindel, Fall 2022 Matrix Computations

Background Plus a Bit

For this class, I assume you know some linear algebra and multivariable
calculus. You should also know how enough programming to pick up how
to write and debug simple Julia scripts (the language syntax is similar to
MATLAB). But there are some things you may never have forgotten that
you will need for this class, and there are other things that you might not
have learned. This set of notes will describe some of these things. It is fine
if you do not know all this material! Ask questions if you see things you do
not know or understand, and do not feel bad about asking the same question
more than once if you get confused or forget during class.

1 Linear algebra background

In what follows, I will mostly consider real vector spaces.

Vectors You should know a vector as:
e An object that can be scaled or added to other vectors.
e A column of numbers, often stored sequentially in computer memory.

We map between the abstract and concrete pictures of vector spaces using
a basis. For example, a basis for the vector space of quadratic polynomials
in one variable is {1, z, 2?}; using this basis, we might concretely represent a
polynomial 1+ 2?/2 in computer memory using the coefficient vector

In numerical linear algebra, we use column vectors more often than row
vectors, but both are important. A row vector defines a linear function over
column vectors of the same length. For example, in our polynomial example,
suppose we want the row vector corresponding to evaluation at —1. With
respect to the power basis {1, z, 2%} for the polynomial space, that would

give us the row vector
wh=1[1 -1 1]



Bindel, Fall 2022 Matrix Computations

Note that if p(x) = 1 + 22/2, then

Vector norms and inner products A norm |- || measures vector lengths.
It is positive definite, homogeneous, and sub-additive:

vl > 0and ||v]| =0iff v =0
leww]] = |al[]v]]
[u+ o] < flufl + o]

The three most common vector norms we work with are the Euclidean norm
(aka the 2-norm), the oco-norm (or max norm), and the 1-norm:

lollz = /> foyf?

J

folloo = macx

ol = lug]

J

Many other norms can be related to one of these three norms.

An inner product (-, -) is a function from two vectors into the real numbers
(or complex numbers for an complex vector space). It is positive definite,
linear in the first slot, and symmetric (or Hermitian in the case of complex
vectors); that is:

(v,v) > 0 and (v,v) =0iff v =0

(au,w) = a(u,w) and (u+ v, w) = (u, w) + (v, w)

(u,v) = (v, u),

where the overbar in the latter case corresponds to complex conjugation.
Every inner product defines a corresponding norm

[o]] = v/ (v, v)



Bindel, Fall 2022 Matrix Computations

The inner product and the associated norm satisfy the Cauchy-Schwarz in-
equality
(u, v) < Julfl|v]]

The standard inner product on R" is
roy=ylae= Zij]-.
j=1

But the standard inner product is not the only inner product, just as the
standard Fuclidean norm is not the only norm.

Matrices You should know a matrix as:
o A representation of a linear map
o An array of numbers, often stored sequentially in memory.

A matrix can also represent a bilinear function mapping two vectors into
the real numbers (or complex numbers for complex vector spaces):

(v, w) — w’ Av.

Symmetric matrices also represent quadratic forms mapping vectors to real
numbers

d(v) = v" Av

We say a symmetric matrix A is positive definite if the corresponding quadratic
form is positive definite, i.e.

vl Av > 0 with equality iff v = 0.

Many “rookie mistakes” in linear algebra involve forgetting ways in which
matrices differ from scalars:

« Not all matrices are square.
 Not all matrices are invertible (even nonzero matrices can be singular).
o Matrix multiplication is associative, but not commutative.

Don’t forget these facts!



Bindel, Fall 2022 Matrix Computations

Block matrices We often partition matrices into submatrices of different
sizes. For example, we might write

an a2 b
21 G929 b2 = |:£~ Z:| s where A = [all Cl12:| ,b = |:Z;:| ,C = |:Clj| .

21 Qa22 Co
C1 Co d

We can manipulate block matrices in much the same way we manipulate
ordinary matrices; we just need to remember that matrix multiplication does
not commute.

Matrix norms The matrices of a given size form a vector space, and we
can define a norm for such a vector space the same way we would for any other
vector space. Usually, though, we want matrix norms that are compatible
with vector space norms (a “submultiplicative norm”), i.e. something that
guarantees

[ Av]| < [|Allf|v]]

The most common choice is to use an operator norm:

[A] = sup [|Av]].

llvfl=1

The operator 1-norm and oo norm are easy to compute

|A]l; = max > " |as;]
J )

[ Al = mgxz |aij]
i

The operator 2-norm is theoretically useful, but not so easily computed.
In addition to the operator norms, the Frobenius norm is a common

matrix norm choice:
1AllF = [ la;l?
4,J

Matrix structure We considered many types of structure for matrices
this semester. Some of these structures are what I think of as “linear al-
gebra structures,” such as symmetry, skew symmetry, orthogonality, or low
rank. These are properties that reflect behaviors of an operator or quadratic



Bindel, Fall 2022 Matrix Computations

form that don’t depend on the specific basis for the vector space (or spaces)
involved. On the other hand, matrices with special nonzero structure — trian-
gular, diagonal, banded, Hessenberg, or sparse — tend to lose those properties
under any but a very special change of basis. But these nonzero structures
or matrix “shapes” are very important computationally.

Matrix products Consider the matrix-vector product
y = Ax

You probably first learned to compute this matrix product with
Y, = Z CLijSL’j.
J

But there are different ways to organize the sum depending on how we want
to think of the product. We could say that y; is the product of row ¢ of A
(written A;.) with x; or we could say that y is a linear combination of the
columns of A, with coefficients given by the elements of . Similarly, consider
the matrix product

C = AB.

You probably first learned to compute this matrix product with
Cij = Z ity
k

But we can group and re-order each of these sums in different ways, each of
which gives us a different way of thinking about matrix products:

Cij = A;.B.; (inner product)

Ci.=A;.B (row-by-row)

C.;=AB.; (column-by-column)

C = Z A. By (outer product)
k

One can also think of organizing matrix multiplication around a partitioning
of the matrices into sub-blocks. Indeed, this is how tuned matrix multiplica-
tion libraries are organized.



Bindel, Fall 2022 Matrix Computations

Fast matrix products There are some types of matrices for which we can
compute matrix-vector products very quickly. For example, if D is a diagonal
matrix, then we can compute Dx with one multiply operation per element
of x. Similarly, if A = uv? is a rank-one matrix, we can compute Az quickly
by recognizing that matrix multiplication is associative

Az = (wvh)z = u(v’z).

Thus, we can apply A with one dot product (between v and x) and a scaling
operation.

Singular values and eigenvalues A square matrix A has an eigenvalue
A and corresponding eigenvector v # 0 if

Av = .

A matrix is diagonalizable if it has a complete basis of eigenvectors vy, ..., v,;
in this case, we write the eigendecomposition

AV =VA

where V = [vl vn} and A = diag(Ai, A2, ..., A,). If a matrix is not
diagonalizable, we cannot write the eigendecomposition in this form (we need
Jordan blocks and generalized eigenvectors). In general, even if the matrix
A is real and diagonalizable, we may need to consider complex eigenvalues
and eigenvectors.

A real symmetric matrix is always diagonalizable with real eigenvalues,
and has an orthonormal basis of eigenvectors ¢y, ..., ¢,, so that we can write
the eigendecomposition

A=QAQT.

For a nonsymmetric (and possibly rectangular) matrix, the natural decom-
position is often not the eigendecomposition, but the singular value decom-
position

A=Uxv7T

where U and V' have orthonormal columns (the left and right singular vectors)
and ¥ = diag(oy, 09, .. .) is the matrix of singular values. The singular values
are non-negative; by convention, they should be in ascending order.



Bindel, Fall 2022 Matrix Computations

2 Calculus background

Taylor approximation in 1D If f : R — R has k£ continuous derivatives,
then Taylor’s theorem with remainder is

@)+ P 6)

f(I—i-Z):f(I')—Ff/(ZE)Z—F...—FH

where £ € [x,z+ z]. We usually work with simple linear approximations, i.e.
fla+2) = f(2) + f(2)2 + O(z%),

though sometimes we will work with the quadratic approximation
1
fla+2) = @) + £(@)z + 5 (@) + O,

In both of these, when say the error term e(z) is O(g(z)), we mean that for
small enough z, there is some constant C' such that

le(2)] < Cyg(2).

We don’t need to remember a library of Taylor expansions, but it is useful
to remember that for || < 1, we have the geometric series

Zaj =(1—-a) "

Taylor expansion in multiple dimensions In more than one space di-
mension, the basic picture of Taylor’s theorem remains the same. If f : R” —
R™ then

fla+2) = f(x) + f(z)z + O(|]]*)

where f'(z) € R™*" is the Jacobian matriz at x. If ¢ : R® — R, then

dx+2) = ¢(2) + ¢'(2)z + %Z%”(Z')Z +O([[=[)-

The row vector ¢/(x) € R™*" is the derivative of ¢, but we often work with
the gradient Vo(z) = ¢'(x)’. The Hessian matrix ¢”(z) is the matrix of
second partial derivatives of ¢. Going beyond second order expansion of ¢
(or going beyond a first order expansion of f) requires that we go beyond
matrices and vectors to work with tensors involving more than two indices.
For this class, we're not going there.



Bindel, Fall 2022 Matrix Computations

Variational notation A directional derivative of a function f : R" — R™
in the direction u is

Tioy= L flatsu) =

ds|,_q
A nice notational convention, sometimes called variational notation (as in
“calculus of variations”) is to write

of = f'(x)ou,

where 0 should be interpreted as “first order change in.” In introductory
calculus classes, this sometimes is called a total derivative or total differential,
though there one usually uses d rather than 0. There is a good reason for
using ¢ in the calculus of variations, though, so that’s typically what I do.

Variational notation can tremendously simplify the calculus book-keeping
for dealing with multivariate functions. For example, consider the problem
of differentiating A~! with respect to every element of A. I would compute
this by thinking of the relation between a first-order change to A=! (written
§[A7!]) and a corresponding first-order change to A (written dA). Using the
product rule and differentiating the relation I = A='A, we have

0=6[A"A4] = §[A A+ A 15A.

Y

Rearranging a bit gives
S[A7Y = A [sA]AT

One can do this computation element by element, but it’s harder to do it
without the computation becoming horrible.

Matrix calculus rules There are some basic calculus rules for expressions
involving matrices and vectors that are easiest to just remember. These are
naturally analogous to the rules in 1D. If f and g are differentiable maps
whose composition makes sense, the multivariate chain rule says

[f(g(x))] = f'(g(x))dg, dg=g'(x)éx
If A and B are matrix-valued functions, we also have
)[A+ B]=0A+ B
d[AB] = [0A]B + A[éB],
S[A7'B] = —A"'0A]JAT'B+ A719B



Bindel, Fall 2022 Matrix Computations

and so forth. The big picture is that the rules of calculus work as well for
matrix-valued functions as for scalar-valued functions, and the main changes
account for the fact that matrix multiplication does not commute. You
should be able to convince yourself of the correctness of any of these rules
using the component-by-component reasoning that you most likely learned in
an introductory calculus class, but using variational notation (and the ideas
of linear algebra) simplifies life immensely.

A few other derivatives are worth having at your fingertips (in each of
the following formulas, = is assumed variable while A and b are constant

d[Ax — b = Adzx
oll|][*] = 22" 0z

5 BxTAx - be} — (52)"(Az — b)
5 Bnm - b||2] — (Asz)(Az — b)

and if f: R™ — R" is given by fi(z) = ¢(z;), then

Of(x)] = diag(¢'(z1), - . ., ¢'(xn)) .

3 CS background

Order notation and performance Just as we use big-O notation in cal-
culus to denote a function (usually an error term) that goes to zero at a
controlled rate as the argument goes to zero, we use big-O notation in algo-
rithm analysis to denote a function (usually run time or memory usage) that
grows at a controlled rate as the argument goes to infinity. For instance, if we
say that computing the dot product of two length n vectors is an O(n) oper-
ation, we mean that the time to compute the dot products of length greater
than some fixed constant ng is bounded by Cn for some constant C'. The
point of this sort of analysis is to understand how various algorithms scale
with problem size without worrying about all the details of implementation
and architecture (which essentially affect the constant C).

Most of the major factorizations of dense numerical linear algebra take
O(n?) time when applied to square n x m matrices, though some building
blocks (like multiplying a matrix by a vector or scaling a vector) take O(n?) or



Bindel, Fall 2022 Matrix Computations

O(n) time. We often write the algorithms for factorizations that take O(n?)
time using block matrix notation so that we can build these factorizations
from a few well-tuned O(n?) building blocks, the most important of which is
matrix-matrix multiplication.

Graph theory and sparse matrices In sparselinear algebra, we consider
matrices that can be represented by fewer than O(n?) parameters. That
might mean most of the elements are zero (e.g. as in a diagonal matrix), or
it might mean that there is some other low-complexity way of representing
the matrix (e.g. the matrix might be a rank-1 matrix that can be represented
as an outer product of two length n vectors). We usually reserve the word
“sparse” to mean matrices with few nonzeros, but it is important to recognize
that there are other data-sparse matrices in the world.

The graph of a sparse matrix A € RV*Y consists of a set of N vertices
V = {1,2,...,N} and a set of edges &€ = {(i,j) : a;; # 0}. While the
cost of general dense matrix operations usually depends only on the sizes
of the matrix involved, the cost of sparse matrix operations can be highly
dependent on the structure of the associated graph.

4 Julia background

Julia is a relatively young language initially released in 2012; the first re-
leases of MATLAB and Python were 1984 and 1991, respectively. It has
become increasingly popular for scientific computing and data science types
of problems for its speed, simple MATLAB-like array syntax, and support
for a variety of programming paradigms. We will provide pointers to some
resources for getting started with Julia (or going further with Julia), but here
we summarize some useful things to remember for writing concise codes for
this class.

Note: These notes were adapted from a similar set of notes for MATLAB
once upon a time. They will almost surely be refined and extended, perhaps
even over the course of this semester.

Building matrices and vectors Julia supports general multi-dimensional
arrays. Though the behavior can be changed, by default, these use one-based
indexing (like MATLAB or Fortran, unlike Python or C/C++). Indexing
uses square brackets (unlike MATLAB), e.g.



N

Bindel, Fall 2022 Matrix Computations

v[1]
Al1,1]

X

y

By default, we think of a one-dimensional array as a column vector, and
a two-dimensional array as a matrix. We can do standard linear algebra
operations like scaling (2#A), summing like types of objects vi+v2), and
matrix multiplication A*v.

The expression

represents the adjoint of the vector v (i.e. the conjugate transpose). The tick
operator also gives the transpose of a matrix. We note that the tick operator
in Julia does not actually copy any storage; it just gives us a re-interpretation
of the argument. This shows up, for example, if we write

v =1[1, 2] # v is a 2-element Vector{Int64} containing [1, 2]

w=v' #w is a 1-2 adjoint(::Vector{Int64}) with eltype Int6j
v[2] = 3 # Now v contains [1, 3] and w is the adjoint [1, 3]'

Julia gives us several standard matrix and vector construction functions.

= zeros(n) # Length n vector of zeros

= zeros(n,n) # n-by-n matriz of zeros

rand(n) # Length n random vector of U[0,1] entries
= ones(n) # Length n vector of ones

= diagm(e) # Construct a diagonal matriz

e2 = diag(D) # Eztract a matriz diagonal

O o o NN
I

The identity matrix in Julia is simply I. This is an abstract matrix with a
size that can usually be inferred from context. In the rare cases when you
need a concrete instantiation of an identity matrix, you can use Matrix (I,
n, n).

Concatenating matrices and vectors In addition to functions for con-
structing specific types of matrices and vectors, Julia lets us put together
matrices and vectors by horizontal and vertical concatenation. This works
with matrices just as well as with vectors! Spaces are used for horizontal
concatenation and semicolons for vertical concatenation.

y = [1; 2] # Length-2 vector

y = [1 2] # 1-by-2 matriz

M=1[12; 34] # 2-by-2 matriz

M = [I A] # Horizontal matriz concatenation
M = [I; A] # Vertical matriz concatenation



N

Bindel, Fall 2022 Matrix Computations

Julia uses commas to separate elements of a list-like data type or an array.
So [1, 2] and [1; 2] give us the same thing (a length 2 vector), but [I,
A] gives us a list consisting of a uniform scaling object and a matrix — not
quite the same as horizontal matrix concatenation.

Transpose and rearrangemenent Julia lets us rearrange the data inside
a matrix or vector in a variety of ways. In addition to the usual transposition
operation, we can also do “reshape” operations that let us interpret the same
data layout in computer memory in different ways.

# Reshape A to a wvector, then back to a matriz
# Note: Julta s column-major

avec = reshape(A, prod(size(A)));

A = reshape(avec, n, n)

idx = randperm(n) # Random permutation of indices (need to use Random)
Ac = A[:,idx] # Permute columns of A

Ar = Afidx,:] # Permute rows of A

Ap = Alidx,idx] # Permute rows and columns

Submatrices, diagonals, and triangles Julia lets us extract specific
parts of a matrix, like the diagonal entries or the upper or lower triangle.

A = randn(6,6) # 6-by-6 random matriz

Af1:3,1:3] # Leading 3-by-3 submatriz
A[1:2:end,:] # Rows 1, 3, &5

A[:,3:end] # Columns 3-6

Ad = diag(Ad) # Diagonal of A (as wector)
Al = diag(A,1) # First superdiagonal

Au = triu(A) # Upper triangle

Al = tril(h) # Lower triangle

Matrix and vector operations Julia provides a variety of elementwise
operations as well as linear algebraic operations. To distinguish elementwise
multiplication or division from matrix multiplication and linear solves or least
squares, we put a dot in front of the elementwise operations.

y = d.*xx # Elementwise multiplication of vectors/matrices
= x./d # Elementwise division

=x +y # Add vectors/matrices
=x .+ 1 # Add scalar to every element of a wvector/matriz

N N <



Bindel, Fall 2022 Matrix Computations

y = Axx # Matriz times vector
y = x'*A # Vector times matriz
C = A¥xB # Matriz times matrizc

# Don't use inv!
x = A\b # Solve Az = b *or* least squares
y = b/A  # Solve y4 or least squares

I
(o))

Things best avoided There are few good reasons to compute explicit ma-
trix inverses or determinants in numerical computations. Julia does provide
these operations. But if you find yourself typing inv or det in Julia, think
long and hard. Is there an alternate formulation? Could you use the forward
slash or backslash operations for solving a linear system?

5 Floating point

Most floating point numbers are essentially normalized scientific notation,
but in binary. A typical normalized number in double precision looks like

(1.b1b2b3 e b52)2 x 2°

where by ...bss are 52 bits of the significand that appear after the binary
point. In addition to the normalize representations, IEEE floating point in-
cludes subnormal numbers (the most important of which is zero) that cannot
be represented in normalized form; +o00; and Not-a-Number (NaN), used to
represent the result of operations like 0/0.

The rule for floating point is that “basic” operations (addition, subtrac-
tion, multiplication, division, and square root) should return the true result,
correctly rounded. So a Julia statement

% Compute the sum of x and y (assuming they are exact)

z =X + Yy
actually computes zZ = fl(z + y) where fI(-) is the operator that maps real
numbers to the closest floating point representation. For numbers that are
in the normalized range (i.e. for which fl(z) is a normalized floating point
number), the relative error in approximating z by fl(z) is smaller in magni-
tude than machine epsilon; for double precision, €maen = 27°% ~ 1.1 x 10716;
that is,

z2=2z(149), || < €mach-



Bindel, Fall 2022 Matrix Computations

We can model the effects of roundoff on a computation by writing a sepa-
rate 6 term for each arithmetic operation in Julia; this is both incomplete
(because it doesn’t handle non-normalized numbers properly) and imprecise
(because there is more structure to the errors than just the bound of ma-
chine epsilon). Nonetheless, this is a useful way to reason about roundoff
when such reasoning is needed.

6 Sensitivity, conditioning, and types of error

In almost every sort of numerical computation, we need to think about errors.
Errors in numerical computations can come from many different sources,
including:

e Roundoff error from inexact computer arithmetic.
o Truncation error from approximate formulas.

o Termination of iterations.

o Statistical error.

There are also model errors that are related not to how accurately we solve
a problem on the computer, but to how accurately the problem we solve
models the state of the world.

There are also several different ways we can think about errors. The
most obvious is the forward error: how close is our approximate answer
to the correct answer? One can also look at backward error: what is the
smallest perturbation to the problem such that our approximation is the
true answer? Or there is residual error: how much do we fail to satisfy the
defining equations?

For each type of error, we have to decide whether we want to look at the
absolute error or the relative error. For vector quantities, we generally want
the normwise absolute or relative error, but often it’s critical to choose norms
wisely. The condition number for a problem is the relation between relative
errors in the input (e.g. the right hand side in a linear system of equations)
and relative errors in the output (e.g. the solution to a linear system of
equations). Typically, we analyze the effect of roundoff on numerical methods
by showing that the method in floating point is backward stable (i.e. the effect
of roundoffs lead to an error that is bounded by some polynomial in the



Bindel, Fall 2022 Matrix Computations

problem size times €p,) and separately trying to show that the problem is
well-conditioned (i.e. small backward error in the problem inputs translates
to small forward error in the problem outputs).

We are often concerned with first-order error analysis, i.e. error analysis
based on a linearized approximation to the true problem. First-order analysis
is often adequate to understand the effect of roundoff error or truncation of
certain approximations. It may not always be enough to understand the
effect of large statistical fluctuations.

7 Problems

1. Consider the mapping from quadratic polynomials to cubic polynomials
given by p(x) — zp(z). With respect to the power basis {1, z, x?, 23},
what is the matrix associated with this mapping?

2. Consider the mapping from functions of the form f(x,y) = ¢; + cox +
c3y to values at (x1,y1), (72,¥2), and (x3,y3). What is the associated
matrix? How would you set up a system of equations to compute the
coefficient vector ¢ associated with a vector b of function values at the
three points?

3. Consider the L? inner product between quadratic polynomials on the
interval [—1,1]:
1
(p,q) = / p(z)q(x) dz
-1
If we write the polynomials in terms of the power basis {1, z, %}, what
is the matrix associated with this inner product (i.e. the matrix A such
that chcq = (p, q) where ¢, and ¢, are the coefficient vectors for the
two polynomials.

4. Consider the weighted max norm

z]| = m?ij|xj|

where wy, ..., w, are positive weights. For a square matrix A, what is
the operator norm associated with this vector norm?

5. If A is symmetric and positive definite, argue that the eigendecompo-
sition is the same as the singular value decomposition.



Bindel, Fall 2022 Matrix Computations

6.

10.

11.

Consider the block matrix
A B
v=lar o)
where A and D are symmetric and positive definite. Show that if
)\min(A))\min(D) Z ||B||g

then the matrix M is symmetric and positive definite.

Suppose D is a diagonal matrix such that AD = DA. If a;; # 0 for
i # j, what can we say about D?

Convince yourself that the product of two upper triangular matrices is
itself upper triangular.

Suppose (@ is a differentiable orthogonal matrix-valued function. Show
that 6Q = QS where S is skew-symmetric, i.e. S = —ST.

Suppose Az = b and (A + D)y = b where A is invertible and D is
relatively small. Assuming we have a fast way to solve systems with A,
give an algorithm to compute y to within an error of O(||D||?) in terms
of two linear systems involving A and a diagonal scaling operation.

Suppose r = b — Az is the residual associated with an approximate
solution . The mazimum componentwise relative residual is

max |7i]/|bi].

How can this be written in terms of a norm?



	Linear algebra background
	Calculus background
	CS background
	Julia background
	Floating point
	Sensitivity, conditioning, and types of error
	Problems

