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1 References
There is a lot of ground to cover when it comes to Krylov subspace methods,
and we scarcely have time to do justice to the two most popular Krylov
subspace methods (CG for the SPD case and GMRES elsewhere). Apart
from the material in Golub and Van Loan and other standard texts, I highly
recommend two books for a survey of other methods and some practical
details:

1. Templates for the Solution of Linear Systems: Building Blocks for
Iterative Methods by Barrett et al. This is freely available, and includes
what you need to know to get started with various methods.

2. Iterative methods for sparse linear systems by Y. Saad. This is now in
a second edition (available from SIAM), but you can also get the first
edition at Saad’s web page.

3. Iterative methods for solving linear systems by Anne Greenbaum (pub-
lished by SIAM) is a fairly up-to-date treatment of the major iterative
solvers for linear systems, including the whole family of Krylov sub-
space solvers as well as classical stationary iterations and multigrid
methods.

4. Iterative methods for linear and nonlinear equations by C. T. Kelley
is another SIAM book — are you seeing a theme? It covers CG and
GMRES, though not the other Krylov iterations; however, it also covers
nonlinear iterations. It is short and tutorial in nature.

For the conjugate gradients method, another popular introduction is Shewchuk’s
“Introduction to the Conjugate Gradient Method Without the Agonizing
Pain”.

2 Conjugate gradients
We now turn to the method of conjugate gradients (CG), perhaps the best
known of the Krylov subspace solvers. The CG iteration can be characterized

http://www.netlib.org/templates/templates.pdf
http://www.netlib.org/templates/templates.pdf
http://www-users.cs.umn.edu/~saad/books.html
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
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as the iteration for a symmetric positive definite A that minimizes the energy

ϕ(x) =
1

2
xTAx− xT b

over a Krylov subspace; as we have already seen,

ϕ(x) +
1

2
bTA−1b =

1

2
∥x− A−1b∥2A =

1

2
∥Ax− b∥2A−1 ,

so this minimization corresponds to minimizing the error in the A-norm or the
residual in the A−1 norm. We also have seen the shape of the standard error
analysis, which involves looking at a Chebyshev polynomial on an interval
containing the spectrum. The iteration turns out to be forward unstable, so
the behavior in floating point arithmetic is not the same as the behavior in
theory; but this does not prevent the iteration from being highly effective,
partly because we can write the iteration in a form that involves an explicit
residual, and looking at a freshly-computed residual gives the method a self-
correcting property.

Our goal for today is to look at the mechanics of the method.

2.1 CG via Lanczos
Last time, we discussed the Lanczos iteration, which produces the Lanczos
decomposition

AQk = Qk+1T̄k

via the iteration
βkqk+1 = Aqk − αkqk − βk−1qk−1

where αk = qTk Aqk. One of the simplest derivations for the conjugate gradient
(CG) method is in terms of the Lanczos decomposition.

In terms of the energy

ϕ(x) =
1

2
xTAx− xT b,

the problem of finding the “best” (minimum energy) approximate solution
in the space becomes

minimize ϕ(Qkyk) =
1

2
yTk Tkyk − yTk e1∥b∥,
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which is solved by
Tkyk = e1∥b∥.

Now let us suppress the indices for a moment and write T = LU (which
can be computed stably without pivoting, as T is SPD). Then we can write
the approximate solution x̂ as

x̂ = QU−1L−1e1∥b∥,

which we will group as

x̂ = V ŷ, V U = Q, Ly = e1∥b∥.

Solving the system for y by forward substitution yields

y1 = ∥b∥
yk = −lk,k−1yk−1.

Similarly, we can compute the columns of V by forward substitution:

v1 = q1/u11

vk =
1

ukk

(qk − vk−1uk−1,k) .

The advantage of this formulation is that if we extend the Krylov subspace,
we simply extend the tridiagonal (and associated factorization), add another
component to y, and bring in a new vector v — all without disturbing the
computations done before. Hence, we have a sequence of coupled recurrences
for the columns of Q and of V that allow us to incrementally update the
solution at the cost of a matrix-vector multiply and a constant amount of
vector arithmetic per step.

This is a useful approach, but it does not shed much insight into how the
method could be extended to optimize more general objectives than quadrat-
ics. For that, we need the approach that gives the CG method its name.

2.2 Another approach to CG
An alternate approach to the conjugate gradient method does not directly
invoke Lanczos, but instead relies on properties that must be satisfied at
each step by the residual rm = b − Axm and the update dm = xm+1 − xm.
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We assume throughout that xm is drawn from Km(A, b), which implies that
rm ∈ Km+1(A, b) and dm ∈ Km+1(A, b).

First, note that rm ⊥ Km(A, b) and dm ⊥A Km(A, b).1 The former state-
ment comes from the Galerkin criterion in the previous section. The latter
statement comes from recognizing that rm+1 = Adm + rm ⊥ Km(A, b); with
Galerkin condition rm ⊥ Km(A, b), this means Adm ⊥ Km(A, b). Together,
these statements give us rm and dm to within a scalar factor, since there is
only one direction in Km+1(A, b) that is orthogonal to all of Km(A, b), and
similarly there is only one direction that is A-orthogonal. This suggests the
following idea to generate the sequence of approximate solutions xk:

1. Find a direction pk−1 ∈ Kk(A, b) that is A-orthogonal to Kk−1(A, b).

2. Compute xk = xk−1 + αkpk−1 so that

rk = rk−1 − αkApk−1 ⊥ rk−1,

i.e. set αk = (rTk−1rk−1)/(p
T
k−1Apk−1). Orthogonality to the rest of

Kk(A, b) follows automatically from the construction.

3. Take rk ∈ Kk+1(A, b) and A-orthogonalize against everything in Kk(A, b)
to generate the new direction pk. As with the Lanczos procedure, the
real magic in this idea is that we have to do very little work to generate
pk from rk. Note that for any j < k−1, we have pTj Ark = (Apj)

T rk = 0,
because Apj ∈ Kj+2(A, b) ⊂ Kk(A, b) is automatically orthogonal to rk.
Therefore, we really only need to choose

pk = rk + βpk−1,

such that pTk−1Apk, i.e. βk = −(pTk−1Ark)/(p
T
k−1Apk−1). Note, though,

that Apk−1 = −(rk − rk−1)/αk; with a little algebra, we find

βk = − rTk Apk
pTk−1Apk−1

=
(rTk rk)/αk

rTk−1rk−1/αk

=
rTk rk

rTk−1rk−1

.

Putting everything together, we have the following coupled recurrences
1u ⊥A v means u and v are orthogonal in the A-induced inner product, i.e. uTAv = 0.
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for the solutions xk, residuals rk, and search directions pk:

αk = (rTk−1rk−1)/(p
T
k−1Apk−1)

xk = xk−1 + αkpk−1

rk = rk−1 − αkApk−1

βk = (rTk rk)/(r
T
k−1rk−1)

pk = rk + βkpk−1.

The sequences rk and pk respectively form orthogonal and A-orthogonal bases
for the nested Krylov subspaces generated by A and b.

2.3 Preconditioning
What happens if we want to compute not on the space Kk(A, b), but the
preconditioned space Kk(M

−1A,M−1b) where M is some symmetric positive
definite matrix? Unfortunately, we cannot apply CG directly to a system
involving M−1A, since even if M and A are SPD, the product will generally
not be. On the other hand, we can certainly work with the related system

(M−1/2AM−1/2)(M1/2x) = M−1/2b.

This is a symmetric positive definite system, and the eigenvalues of M−1/2AM−1/2

are the same as the generalized eigenvalues of the pencil (A,M). Moreover,
we can work with this system implicitly without ever having to form the
awkward square root.

Define p̄k = M−1/2pk and r̄k = M1/2rk; then CG iteration on the related
system can be rephrased as

αk = (r̄Tk−1M
−1r̄k−1)/(p̄

T
k−1Ap̄k−1)

xk = xk−1 + αkp̄k−1

r̄k = r̄k−1 − αkAp̄k−1

βk = (r̄Tk M
−1r̄k)/(r̄

T
k−1M

−1r̄k−1)

p̄k = M−1r̄k + βkp̄k−1.

Because expressions involving M−1 and the residual appear throughout, we
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introduce a new variable zk = M−1rk, leading to

αk = (r̄Tk−1zk−1)/(p̄
T
k−1Ap̄k−1)

xk = xk−1 + αkp̄k−1

r̄k = r̄k−1 − αkAp̄k−1

Mzk = rk

βk = (r̄Tk zk)/(r̄
T
k−1zk−1)

p̄k = zk + βkp̄k−1.

Another way of thinking about the preconditioned CG iteration is that
it is ordinary CG, whether thought of in terms of conjugate directions or in
terms of Lanczos, but with a different inner product: the M−1 inner product
on residuals, or the M inner product in the Lanczos procedure.

2.4 Nonlinear CG
One of the advantages of the interpretation of CG in terms of search direc-
tions and residuals is that it generalizes beyond the case of quadratic op-
timization or linear system solving to more general optimization problems.
To derive nonlinear CG, we generalize the quantities in the ordinary CG
iteration in the following way:

• In ordinary CG, we let ϕ be a quadratic energy function. In nonlinear
CG, ϕ is a more general (though ideally convex) objective function.

• In ordinary CG, we have rk = −∇ϕ(xk) = b − Axk. In nonlinear CG,
we take rk = −∇ϕ(xk), though the gradient expression will generally
be more complicated.

• In ordinary CG, we choose a search direction pk = rk + βkpk−1 where
βk = rTk rk/r

T
k−1rk−1. In nonlinear CG, we may use the same formula

(the Fletcher-Reeves formula), or we may choose any number of other
formulas that are equivalent in the quadratic case but not in the more
general case.

• In ordinary CG, once we choose a search direction pk−1, we compute a
step xk = xk−1 + αkpk−1. The αk has the property

αk = argminα ϕ(xk + αpk−1)

In nonlinear CG, we instead use a line search to choose the step size.
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Like ordinary CG, nonlinear CG iterations can be preconditioned.

2.5 The many approaches to CG
The description I have given in these notes highlights (I hope) how orthogo-
nality of the residuals and A-orthogonality of search directions follows natu-
rally from the Galerkin condition, and how the rest of the CG iteration can
be teased out of these orthogonality relations. However, this is far from the
only way to “derive” the method of conjugate gradients. The discussion given
by Demmel and by Saad (in Iterative Methods for Sparse Linear Systems)
highlights the Lanczos connection, and uses this connection to show the ex-
istence of A-orthogonal search directions. Golub and Van Loan show the
Lanczos connection, but also show how conjugate gradients can be derived
as a general-purpose minimization scheme applied to the quadratic function
ϕ(x). Trefethen and Bau give the iteration without derivation first, and then
gradually explain some of its properties. If you find these discussions con-
fusing, or simply wish to read something amusing, I recommend Shewchuk’s
“Introduction to the Conjugate Gradient Method Without the Agonizing
Pain”.

3 GMRES
The generalized minimal residual (GMRES) method of solving linear systems
works with general systems of linear equations. Next to CG, it is probably
the second-most popular of the Krylov subspace iterations.

The GMRES method is so named because it chooses the solution from
a linear subspace that minimizes the (Euclidean) norm of the residual over
successive Krylov subspaces. In terms of the Arnoldi decompositions

AQk = Qk+1H̄k,

we have that xk = Qkyk where

yk = argminy ∥H̄ky − ∥b∥e1∥2.

One can solve the Hessenberg least squares problem in O(k2) time, but this is
generally a non-issue. The true cost of GMRES is in saving the basis (which
can use memory very quickly) and in keeping the basis orthogonal.

http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
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Unlike the CG method, alas, the GMRES method does not boil down
to a short recurrence through a sequence of clever tricks. Consequently, we
generally cannot afford to run the iteration for many steps before restart.
We usually denote the iteration with periodic restarting every m steps as
GMRES(m). That is, at each step we

1. Start with an initial guess x̂ from previous steps.

2. Form the residual r = b− Ax̂.

3. Run m steps of GMRES to approximately solve Az = r.

4. Update x̂ := x̂+ z.

The GMRES iteration is generally used with a preconditioner. The com-
mon default is to use preconditioning on the left, i.e. solve

M−1Ax = M−1b;

in this setting, GMRES minimizes not the original residual, but the precon-
ditioned residual. To the extent that the preconditioner reduces the condi-
tion number of the problem overall, the norm of the preconditioned residual
tends to be a better indicator for forward error than the norm of the un-
preconditioned residual. Of course, one can also perform preconditioning on
the right (i.e. changing the unknown), or perform two-sided preconditioning.

The standard GMRES iteration (along with CG and almost every other
Krylov subspace iteration) assumes a single, fixed preconditioner. But what
if we want to try several preconditioners at once, or perhaps to use Gauss-
Southwell or a chaotic relaxation method for preconditioning? Or perhaps we
want to use a variable number of steps of some other iteration to precondition
something like GMRES? For this purpose, it is useful to consider the flexible
GMRES variant (FGMRES). Though it no longer technically is restricted
to a Krylov subspace generated by a fixed matrix, the FGMRES iteration
looks very similar to the standard GMRES iteration; we build an Arnoldi-like
decomposition with the form

AZm = Vm+1H̄m

and then compute updates as a linear combination of the columns of Zm by
solving a least squares problem with H̄m. But here, each column of Zm looks
like zj = M−1

j vj where each Mj may be different.
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4 Bi-Lanczos
So far, our focus has been on Krylov subspace methods that we can explain
via the Lanczos or Arnoldi decompositions. The Lanczos-based CG has many
attractive properties, but it only works with symmetric and positive definite
matrices. One can apply CG to a system of normal equations — the so-
called CGNE method — but this comes at the cost of squaring the condition
number. There are also methods such as the LSQR iteration that implicitly
work with the normal equations, but use an incrementally-computed version
of the Golub-Kahan bi-diagonalization. The Arnoldi-based GMRES iteration
works for more general classes of problems, and indeed it is the method of
choice; but it comes at a stiff penalty in terms of orthogonalization costs.

Are there alternative methods that use short recurrences (like CG) but are
appropriate for nonsymmetric matrices? There are several, though all have
some drawbacks; the QMR and BiCG iterations may be the most popular.
The key to the behavior of these methods comes from their use of a different
decomposition, the bi-orthogonal Lanczos factorization:

AQj = QjTj + βj+1qj+1e
∗
j

A∗Pj = PjT
∗
j + γ̄j+1pj+1e

∗
j

P ∗
j Qj = I.

Here, the bases Qj and Pj span Krylov subspaces generated by A and A∗,
respectively (which means these algorithms require not only a function to
apply A to a vector, but also a function to apply A∗). The bases are not
orthonormal, and indeed may become rather ill-conditioned. They do have
a mutual orthogonality relationship, though, namely P ∗

j Qj = I.
Details of the bi-orthogonal Lanczos factorization and related iterative

algorithms can be found in the references. For the present, we satisfy ourseves
with a few observations:

• The GMRES iteration shows monotonic reduction in the precondi-
tioned residual, even with restarting. CG shows monotonic reduction
in the error or residual when measured in appropriate norms. The
methods based on bi-orthogonal Lanczos, however, can show rather
erratic convergence; errors decay in general, but they may exhibit in-
termediate local increases. BiCG is generally more erratic than QMR.

• Even in exact arithmetic, the subspace bases formed by bi-Lanczos may
become rather ill-conditioned.
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• The bi-orthogonal iterations sometimes show breakdown behavior where
the local approximation problem becomes singular. This can be over-
come using lookahead techniques, though it complicates the algorithm.

The relative simplicity of GMRES — both in theory and in implementation
— perhaps explains its relative popularity. Nonetheless, these other methods
are worth knowing about.

5 Extrapolation and mixing
When we discussed CG, we also briefly discussed nonlinear CG methods
(e.g. Fletcher-Reeves). One can similarly extend Krylov subspace ideas to
accelerate nonlinear equation solving methods; that is, given a fixed point
iteration

x(k+1) = G(x(k)),

we can accelerate the computation of the fixed point by taking an appropri-
ate linear combination of the iterates x(k). This is a powerful idea; indeed, it
is so powerful that it can be used to compute repulsive fixed points where the
usual iteration would diverge! The techniques usually go under the heading
of extrapolation methods (including Reduced Rank Extrapolation or RRE,
Minimal Polynomial Extrapolation or MPE, and Vector Padé Extrapola-
tion); and acceleration or mixing techniques, the most popular of which is
the Anderson acceleration method. Applied to the iterates of a stationary
linear system solver, these techniques are all formally equivalent to Krylov
subspace solvers. In particular, RRE is equivalent to GMRES (in exact
arithmetic).

The idea behind extrapolation methods is to exploit systematic patterns
in the convergence of fixed point iteration. For example, suppose the error
iteration gave us (approximately)

e(k) =
m∑
j=1

v(j)αk
j

where the vectors v(j) and the exponents αj were unknown. The hope is that
we can learn the parameters of the error iteration by fitting a model to the
update sequence:

u(k) = x(k+1) − x(k) = e(k+1) − e(k) =
m∑
j=1

(αj − 1)v(j)αk
j .
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If p(z) = c0 + c1z + . . .+ cmz
m is a polynomial such that p(αj) = 0 for each

αj, then we should satisfy
m∑
j=1

cju
(k+j) = 0.

If we look at enough update steps, we can determine both the coefficient
vectors and the exponents.

With an appropriate model, extrapolation methods can produce rather
astonishing results. Of course, extrapolation methods are subject to issues of
overfitting, and (particularly when the convergence is irregular) may produce
results that are wildly incorrect.

5.1 Communication-Avoiding (CA) Krylov
In highly parallel computing systems, the cost of computing with Krylov sub-
spaces may be dominated not by the matrix-vector products, but by the cost
of computing dot products for the purpose of orthogonalization. Repeatedly
applying matrix-vector products may involves rather local communication
patterns, but dot products involve a global communication. Of course, we
could (in principle) form a power basis for the Krylov subspace; but this
basis is typically too ill-conditioned for serious work. So what is one to do?

The communication-avoiding Krylov methods use the power of polynomi-
als to thread between the Scylla of synchronization costs and the Charybdis
of catastrophic ill-conditioning. In general, we write Krylov subspace bases
as

Kk(A, b) = span{pj(A)b}(k−1)
j=0 .

where pj(z) is a degree j polynomial. In the case of the power basis, pj(z) =
zj; and in the case of the Lanczos or Arnoldi bases, pj(z) is chosen fully adap-
tively. The communication avoiding approach is to choose pj(z) in advance,
but using information about the spectra to ensure that the vectors pj(A)b
are not too nearly co-linear.

As with some of the other topics in this section, the big idea behind
communication-avoiding Krylov methods is simple, but there are too many
details to give a full treatment in the time we have allocated. For those inter-
ested in such details, I recommend the 2010 Ph.D. thesis of Mark Hoemmen.

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-37.pdf
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