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1 Krylov subspaces
The Krylov subspace of dimension k generated by A ∈ Rn×n and b ∈ Rn is

Kk(A, b) = span{b, Ab, . . . , Ak−1b} = {p(A)b : p ∈ Pk−1}.

Krylov subspaces are a natural choice for subspace-based methods for ap-
proximate linear solves, for two reasons:

• If all you are allowed to do with A is compute matrix-vector products,
and the only vector at hand is b, what else would you do?

• The Krylov subspaces have excellent approximation properties.

Krylov subspaces have several properties that are worthy of comment.
Because the vectors Ajb are proportional to the vectors obtained in power
iteration, one might reasonably (and correctly) assume that the space quickly
contains good approximations to the eigenvectors associated with the largest
magnitude eigenvalues. Krylov subspaces are also shift-invariant, i.e. for any
σ

Kk(A− σI, b) = Kk(A, b).

By choosing different shifts, we can see that the Krylov subspaces tend to
quickly contain not only good approximations to the eigenvector associated
with the largest magnitude eigenvalue, but to all “extremal” eigenvalues.

Most arguments about the approximation properties of Krylov subspaces
derive from the characterization of the space as all vectors p(A)b where p ∈
Pk−1 and from the spectral mapping theorem, which says that if A = V ΛV −1

then p(A) = V p(Λ)V −1. Hence, the distance between an arbitrary vector (say
d) and the Krylov subspace is

min
p∈Pk−1

∥∥V [p(Λ)V −1b− V −1d
]∥∥ .

As a specific example, suppose that we want to choose x̂ in a Krylov subspace
in order to minimize the residual Ax̂ − b. Writing x̂ = p(A)b, we have that
we want to minimize

∥[Ap(A)− I]b∥ = ∥q(A)b∥
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where q(z) is a polynomial of degree at most k such that q(1) = 1. The best
possible residual in this case is bounded by

∥q(A)b∥ ≤ κ(V )∥q(Λ)∥∥b∥,

and so the relative residual can be bounded in terms of the condition number
of V and the minimum value that can bound q on the spectrum of A subject
to the constraint that q(0) = 1.

2 Chebyshev polynomials
Suppose now that A is symmetric positive definite, and we seek to minimize
∥q(A)b∥ ≤ ∥q(Λ)∥∥b∥. Controlling q(z) on all the eigenvalues is a pain, but
it turns out to be simple to instead bound q(z) over some interval [α1, αn]
The polynomial we want is the scaled and shifted Chebyshev polynomial

qm(z) =
Tm ((z − ᾱ)/ρ)

Tm (−ᾱ/ρ)

where ᾱ = (αn + α1)/2 and ρ = (αn − α1)/2.
The Chebyshev polynomials Tm are defined by the recurrence

T0(x) = 1

T1(x) = x

Tm+1(x) = 2xTm(x)− Tm−1(x), m ≥ 1.

The Chebyshev polynomials have a number of remarkable properties, but
perhaps the most relevant in this setting is that

Tm(x) =

{
cos(m cos−1(x)), |x| ≤ 1,

cosh(m cosh−1(x)), |x| ≥ 1
.

Thus, Tm(x) oscillates between ±1 on the interval [−1, 1], and then grows
very quickly outside that interval. In particular,

Tm(1 + ϵ) ≥ 1

2
(1 +m

√
2ϵ).

Thus, we have that on [α,αn], |qm| ≤ 2
1+m

√
2ϵ

where

ϵ = ᾱ/ρ− 1 =
2α1

αn − α1

= 2 (κ(A)− 1)−1 ,
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and hence

|qm(z)| ≤
2

1 + 2m/
√

κ(A)− 1

= 2

(
1− 2m√

κ(A)− 1

)
+O

(
m2

κ(A− 1)

)
.

Hence, we expect to reduce the optimal residual in this case by at least about
2/
√
κ(A)− 1 at each step.

3 Chebyshev: Uses and Limitations
We previously sketched out an approach for analyzing the convergence of
methods based on Krylov subspaces:

1. Characterize the Krylov subspace of interest in terms of polynomials,
i.e. Kk(A, b) = {p(A)b : p ∈ Pk−1}.

2. For x̂ = p(A)b, write an associated error (or residual) in terms of a
related polynomial in A.

3. Phrase the problem of minimizing the error, residual, etc. in terms of
minimizing a polynomial q(z) on the spectrum of A (call this Λ(A)).
The polynomial q must generally satisfy some side constraints that
prevent the zero polynomial from being a valid solution.

4. Let Λ(A) ⊂ Ω, and write

max
λ∈Λ(A)

|q(λ)| ≤ max
z∈Ω

|q(z)|.

The set Ω should be simpler to work with than the set of eigenvalues.
The simplest case is when A is symmetric positive definite and Ω =
[λ1, λn].

5. The optimization problem can usually be phrased in terms of special
polynomial families. The simplest case, when Ω is just an interval,
usually leads to an analysis via Chebyshev polynomials.
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The analysis sketched above is the basis for the convergence analysis of the
Chebyshev semi-iteration, the conjugate gradient method, and (with various
twists) several other Krylov subspace methods.

The advantage of this type of analysis is that it leads to convergence
bounds in terms of some relatively simple property of the matrix, such as
the condition number. The disadvantage is that the approximation of the
spectral set Λ(A) by a bounding region Ω can lead to rather pessimistic
bounds. In practice, the extent to which we are able to find good solutions
in a Krylov subspace often depends on the “clumpiness” of the eigenvalues.
Unfortunately, this “clumpiness” is rather difficult to reason about a priori!
Thus, the right way to evaluate the convergence of Krylov methods in practice
is usually to try them out, plot the convergence curves, and see what happens.

4 Arnoldi
Krylov subspaces are good spaces for approximation schemes. But the power
basis (i.e. the basis Ajb for j = 0, . . . , k − 1) is not good for numerical
work. The vectors in the power basis tend to converge toward the dominant
eigenvector, and so the power basis quickly becomes ill-conditioned. We
would much rather have orthonormal bases for the same spaces. This is
where the Arnoldi iteration and its kin come in.

Each step of the Arnoldi iteration consists of two pieces:

• Compute Aqk to get a vector in the space of dimension k + 1

• Orthogonalize Aqk against q1, . . . , qk using Gram-Schmidt. Scale the
remainder to unit length.

If we keep track of the coefficients in the Gram-Schmidt process in a matrix
H, we have

hk+1,kqk+1 = Aqk −
k∑

j=1

qjhjk

where hjk = qTj Aqk and hk+1,k is the normalization constant. Rearranging
slightly, we have

Aqk =
k+1∑
j=1

qjhjk.
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Defining Qk =
[
q1 q2 . . . qk

]
, we have the Arnoldi decomposition

AQk = Qk+1H̄k, H̄k =


h11 h12 . . . h1k

h21 h22 . . . h2k

h32 . . . h3k

. . . ...
hk+1,k

 ∈ R(k+1)×k.

The Arnoldi decomposition is simply the leading k columns of an upper
Hessenberg reduction of the original matrix A. The Arnoldi algorithm is the
interlaced multiply-and-orthogonalize process used to obtain the decomposi-
tion. Unfortunately, the modified Gram-Schmidt algorithm — though more
stable than classical Gram-Schmidt! — is nonetheless unstable in general.
The sore point occurs when we start with a matrix that lies too near the span
of the vectors we orthogonalize against; in this case, by the time we finish
orthogonalizing against previous vectors, we have cancelled away so much of
the original vector that what is left may be substantially contaminated by
roundoff. For this reason, the “twice is enough” reorthogonalization process
of Kahan and Parlett is useful: this says that if the remainder after orthog-
onalization is too small compared to what we started with, then we should
perhaps refine our computation by orthogonalizing the remainder again.

5 Lanczos
Now suppose that A is a symmetric matrix. In this case, the Arnoldi de-
composition takes a special form: the upper Hessenberg matrix is now a
symmetric upper Hessenber matrix (aka a tridiagonal), and we dub the re-
sulting decomposition the Lanczos decomposition:

AQk = Qk+1T̄k, Tk =



α1 β1

β1 α2 β2

β2 α3 β3

. . . . . . . . .
βk−2 αk−1 βk−1

βk−1 αk

βk


The Lanczos algorithm is the specialization of the Arnoldi algorithm to the
symmetric case. In exact arithmetic, the tridiagonal form of the coefficient
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matrix allows us to do only a constant amount of orthogonalization work at
each step.

Sadly, the Lanczos algorithm in floating point behaves rather differently
from the algorithm in exact arithmetic. In particular, the iteration tends to
“restart” periodically as the space starts to get very good approximations
of eigenvectors. One can deal with this via full reorthogonalization, as with
the Arnoldi iteration; but then the method loses the luster of low cost, as
we have to orthogonalize against several vetors periodically. An alternate
selective orthogonalization strategy proposed by Parlett and Scott lets us
orthogonalize only against a few previous vectors, which are associated with
converged eigenvector approximations (Ritz vectors). But, as we shall see,
such orthogonalization is mostly useful when we want to solve eigenvalue
problems. For linear systems, it tends not to be necessary.
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