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1 Approximation from a subspace
Our workhorse methods for solving large-scale systems involve two key ideas:
relaxation to produce a sequence of ever-better approximations to a problem,
and approximation from a subspace assumed to contain a good estimate to the
solution (e.g. the subspace spanned by iterates of some relaxation method).
Having dealt with the former, we now deal with the latter.

Suppose we wish to estimate the solution to a linear system Ax(∗) = b by
an approximate solution x̂ ∈ V , where V is some approximation subspace.
How should we choose x̂? There are three standard answers:

• Least squares: Minimize ∥Ax̂− b∥2M for some M .

• Optimization: If A is SPD, minimize ϕ(x) = 1
2
xTAx− xT b over V .

• Galerkin: Choose Ax̂ − b ⊥ W for some test space W . In Bubnov-
Galerkin, W = V ; otherwise we have a Petrov-Galerkin method.

These three methods are the standard approaches used in all the methods
we will consider. Of course, they are not the only possibilities. For example,
we might choose x̂ to minimize the residual in some non-Euclidean norm,
or we might more generally choose x̂ by optimizing some non-quadratic loss
function. But these approaches lead to optimization problems that cannot
be immediately solved by linear algebra methods.

The three approaches are closely connected in many ways:

• Suppose x̂ is the least squares solution. Then the normal equations
give that Ax̂− b ⊥ MAV ; this is a (Petrov-)Galerkin condition.

• Similarly, suppose x̂ minimizes ϕ(x) over the space V . Then for any
δx ∈ V we must have

δϕ = δxT (Ax− b) = 0,

i.e. Ax− b ⊥ V . This is a (Bubnov-)Galerkin condition.
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• If x is the least squares solution, then by definition we minimize
1

2
∥Ax− b∥2M =

1

2
xTATMAx− xTATMb+

1

2
bTMb,

i.e. we have the optimization objective for the normal equation SPD
system ATMAx− ATMb = 0, plus a constant.

• Note that if A is SPD, then we can express ϕ with respect to the A−1

norm as
ϕ(x) =

1

2
∥Ax− b∥2A−1 −

1

2
bTA−1b,

so choosing x̂ by minimizing ϕ(x) is equivalent to minimizing the A−1

norm of the residual.

• Alternately, write ϕ(x) as

ϕ(x) =
1

2
∥x− A−1b∥2A − 1

2
bTA−1b,

and so choosing x̂ by minimizing ϕ(x) is also equivalent to minimizing
the A norm of the error.

When deriving methods, it is frequently convenient to turn to one or the
other of these characterizations. But for computation and analysis, we will
generally turn to the Galerkin formalism.

In order for any of these methods to produce accurate results, we need
two properties to hold:

• Consistency: Does the space contain a good approximation to x?

• Stability: Will our scheme find something close to the best approxima-
tion possible from the space?

We leave the consistency and the choice of subspaces to later; for now, we
deal with the problem of method stability.

2 Quasi-optimality
We quantify the stability of a subspace approximation method via a quasi-
optimality bound:

∥x∗ − x̂∥ ≤ Cmin
v∈V

∥x∗ − v∥.
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That is, the approximation x̂ is quasi-optimal if it has error within some
factor C of the best error possible within the space.

To derive quasi-optimality results, it is useful to think of all of our meth-
ods as defining a solution projector that maps x∗ to the approximate solution
to Ax̂ = Ax∗ = b. From the (Petrov-)Galerkin perspective, if W ∈ Rn×k and
V ∈ Rn×k are bases for the trial space W and V , respectively, then we have

W TAV ŷ = W T b, x̂ = V ŷ

x̂ = V (W TAV )−1W T b

= V (W TAV )−1W TAx∗.

= Πx∗.

The error projector I−Π maps x∗ to the error x̂−x∗ in approximately solving
Ax̂ ≈ Ax∗ = b. There is no error iff x∗ is actually in V ; that is, V is the null
space of I − Π. Hence, if x̃ is any vector in V , then

ê = (I − Π)x = (I − Π)(x− x̃) = (I − Π)ẽ.

Therefore we have

∥x− x̂∥ ≤ ∥I − Π∥min
x̃∈V

∥x− x̃∥,

and a bound on ∥I − Π∥ gives a quasi-optimality result.
For any operator norm, we have

|I − Π∥ ≤ 1 + ∥Π∥ ≤ 1 + ∥V ∥∥(W TAV )−1∥∥W TA∥;

and in any Euclidean norm, if V and W are chosen to have orthonormal
columns, then

∥I − Π∥ ≤ 1 + ∥(W TAV )−1∥∥A∥.
If A is symmetric and positive definite and V = W , then the interlace
theorem gives ∥(V TAV )−1∥ ≤ ∥A−1∥, and the quasi-optimality constant is
bounded by 1 + κ(A). In more general settings, though, we may have no
guarantee that the projected matrix W TAV is far from singular, even if A
itself is nonsingular. To guarantee boundedness of (W TAV )−1 a priori re-
quires a compatibility condition relating W , V , and A; such a condition is
sometimes called the LBB condition (for Ladyzhenskaya-Babuška-Brezzi) or
the inf-sup condition, so named because (as we have discussed previously)

σmin(W
TAV ) = inf

w∈W
sup
v∈V

wTAv

∥w∥∥v∥
.
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The LBB condition plays an important role when Galerkin methods are used
to solve large-scale PDE problems, since there it is easy to choose the spaces
V and W in a way that leads to very bad conditioning. But for iterative
solvers of the type we discuss in this course (Krylov subspace solvers), such
pathologies are a more rare occurrence. In this setting, we may prefer to
monitor ∥(W TAV )−1∥ directly as we go along, and to simply increase the
dimension of the space if we ever run into trouble.

3 Krylov subspaces
The Krylov subspace of dimension k generated by A ∈ Rn×n and b ∈ Rn is

Kk(A, b) = span{b, Ab, . . . , Ak−1b} = {p(A)b : p ∈ Pk−1}.

Krylov subspaces are a natural choice for subspace-based methods for ap-
proximate linear solves, for two reasons:

• If all you are allowed to do with A is compute matrix-vector products,
and the only vector at hand is b, what else would you do?

• The Krylov subspaces have excellent approximation properties.

Krylov subspaces have several properties that are worthy of comment.
Because the vectors Ajb are proportional to the vectors obtained in power
iteration, one might reasonably (and correctly) assume that the space quickly
contains good approximations to the eigenvectors associated with the largest
magnitude eigenvalues. Krylov subspaces are also shift-invariant, i.e. for any
σ

Kk(A− σI, b) = Kk(A, b).

By choosing different shifts, we can see that the Krylov subspaces tend to
quickly contain not only good approximations to the eigenvector associated
with the largest magnitude eigenvalue, but to all “extremal” eigenvalues.

Most arguments about the approximation properties of Krylov subspaces
derive from the characterization of the space as all vectors p(A)b where p ∈
Pk−1 and from the spectral mapping theorem, which says that if A = V ΛV −1

then p(A) = V p(Λ)V −1. Hence, the distance between an arbitrary vector (say
d) and the Krylov subspace is

min
p∈Pk−1

∥∥V [p(Λ)V −1b− V −1d
]∥∥ .
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As a specific example, suppose that we want to choose x̂ in a Krylov subspace
in order to minimize the residual Ax̂ − b. Writing x̂ = p(A)b, we have that
we want to minimize

∥[Ap(A)− I]b∥ = ∥q(A)b∥

where q(z) is a polynomial of degree at most k such that q(1) = 1. The best
possible residual in this case is bounded by

∥q(A)b∥ ≤ κ(V )∥q(Λ)∥∥b∥,

and so the relative residual can be bounded in terms of the condition number
of V and the minimum value that can bound q on the spectrum of A subject
to the constraint that q(0) = 1.

4 Chebyshev polynomials
Suppose now that A is symmetric positive definite, and we seek to minimize
∥q(A)b∥ ≤ ∥q(Λ)∥∥b∥. Controlling q(z) on all the eigenvalues is a pain, but
it turns out to be simple to instead bound q(z) over some interval [α1, αn]
The polynomial we want is the scaled and shifted Chebyshev polynomial

qm(z) =
Tm ((z − ᾱ)/ρ)

Tm (−ᾱ/ρ)

where ᾱ = (αn + α1)/2 and ρ = (αn − α1)/2.
The Chebyshev polynomials Tm are defined by the recurrence

T0(x) = 1

T1(x) = x

Tm+1(x) = 2xTm(x)− Tm−1(x), m ≥ 1.

The Chebyshev polynomials have a number of remarkable properties, but
perhaps the most relevant in this setting is that

Tm(x) =

{
cos(m cos−1(x)), |x| ≤ 1,

cosh(m cosh−1(x)), |x| ≥ 1
.
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Thus, Tm(x) oscillates between ±1 on the interval [−1, 1], and then grows
very quickly outside that interval. In particular,

Tm(1 + ϵ) ≥ 1

2
(1 +m

√
2ϵ).

Thus, we have that on [α,αn], |qm| ≤ 2
1+m

√
2ϵ

where

ϵ = ᾱ/ρ− 1 =
2α1

αn − α1

= 2 (κ(A)− 1)−1 ,

and hence

|qm(z)| ≤
2

1 + 2m/
√

κ(A)− 1

= 2

(
1− 2m√

κ(A)− 1

)
+O

(
m2

κ(A− 1)

)
.

Hence, we expect to reduce the optimal residual in this case by at least about
2/
√
κ(A)− 1 at each step.

5 Chebyshev: Uses and Limitations
We previously sketched out an approach for analyzing the convergence of
methods based on Krylov subspaces:

1. Characterize the Krylov subspace of interest in terms of polynomials,
i.e. Kk(A, b) = {p(A)b : p ∈ Pk−1}.

2. For x̂ = p(A)b, write an associated error (or residual) in terms of a
related polynomial in A.

3. Phrase the problem of minimizing the error, residual, etc. in terms of
minimizing a polynomial q(z) on the spectrum of A (call this Λ(A)).
The polynomial q must generally satisfy some side constraints that
prevent the zero polynomial from being a valid solution.

4. Let Λ(A) ⊂ Ω, and write

max
λ∈Λ(A)

|q(λ)| ≤ max
z∈Ω

|q(z)|.
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The set Ω should be simpler to work with than the set of eigenvalues.
The simplest case is when A is symmetric positive definite and Ω =
[λ1, λn].

5. The optimization problem can usually be phrased in terms of special
polynomial families. The simplest case, when Ω is just an interval,
usually leads to an analysis via Chebyshev polynomials.

The analysis sketched above is the basis for the convergence analysis of the
Chebyshev semi-iteration, the conjugate gradient method, and (with various
twists) several other Krylov subspace methods.

The advantage of this type of analysis is that it leads to convergence
bounds in terms of some relatively simple property of the matrix, such as
the condition number. The disadvantage is that the approximation of the
spectral set Λ(A) by a bounding region Ω can lead to rather pessimistic
bounds. In practice, the extent to which we are able to find good solutions
in a Krylov subspace often depends on the “clumpiness” of the eigenvalues.
Unfortunately, this “clumpiness” is rather difficult to reason about a priori!
Thus, the right way to evaluate the convergence of Krylov methods in practice
is usually to try them out, plot the convergence curves, and see what happens.
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