
Bindel, Fall 2022 Matrix Computations

2019-11-08

Editorial note: Part of this material was covered during the Nov 3 lecture.

1 The need for model problems
Direct methods for solving linear systems and eigenvalue problems are (mostly)
“black box.” We design algorithms that work well for a broad category of
problems with given structural properties; once we understand the structure,
there is often a reasonably routine choice of solvers. Of course, even for direct
methods, it is not entirely true that we get “black box” performance — for
example, the fill in sparse direct factorization methods is highly dependent
on the sparsity structure of the matrix at hand. Nonetheless, users of sparse
solvers can largely leave the details to specialists once they understand the
basic lay of the land.

For the remainder of the semester, we will focus on iterative solvers,
which are a different beast altogether. Iterative solvers produce a sequence
of approximate solutions that (ideally) converge to the true solution to a
linear system or eigenvalue problem. However, the rate of convergence is
highly dependent on both the iterative method and the details of the problem.
Even when we are able to take advantage of a good library of iterative solvers,
there are often a wide variety of methods to choose from and a large number
of parameters that we need to understand and tune to get good performance.

Because iterative methods are more problem-dependent than direct meth-
ods, we will focus our presentation on a set of model problems that exhibit
characteristics common in many problems drawn from physical models. We
will also comment on other types of problem structures as we go along, but
will mostly leave the details to select homework problems.

2 The 1D model problem
It is difficult to say many useful things about the convergence of iterative
methods without looking at a concrete problem. Therefore, we will set the
stage with a very specific model problem: a discretization of the Poisson
equation. We start with the one-dimensional case.

Bindel, Fall 2022 Matrix Computations

The continuous version of our model problem is a one-dimensional Poisson
equation with homogeneous Dirichlet boundary conditions:

−d
2u

dx2
= f for x ∈ (0, 1)

u(0) = 0

u(1) = 0

Let xj = j/(n + 1) for j = 0, 1, . . . , n + 1 be a set of mesh points. We
can approximate the second derivative of u at a point by a finite difference
method:

−d
2u

dx2
(xj) ≈

−u(xj−1) + 2u(xj)− u(xj+1)

h2

where h = 1/(n+1) is the mesh spacing. If we replace the second derivative
in the Poisson equation with this finite-difference approximation, we have a
scheme for computing uj ≈ u(xj):

−uj−1 + 2uj − uj−1 = h2fj for 1 ≤ j ≤ n

u0 = 0

un+1 = 0

We can write this approximation as a matrix equation Tu = h2f , where

T =

2 −1
−1 2 −1

−1 2 −1
.

−1 2 −1
−1 2

Part of what makes this simple Poisson discretization so appealing as

a model problem is that we can compute the eigenvalues and eigenvectors
directly. This is because solving the (T−λ)ψ = 0 is equivalent to considering
the constant coefficient difference equation

ψk+1 − (2− λ)ψk + ψk−1 = 0

subject to the boundary conditions ψ0 = ψn+1 = 0. Solutions to this differ-
ence equation must have the form

ψk = αξk + βξ̄k,

Bindel, Fall 2022 Matrix Computations

where ξ and ξ̄ are the roots of the characteristic polynomial p(z) = z2− (2−
λ)z + 1. For 0 ≤ λ ≤ 4, these roots form a complex conjugate pair, each
with unit magnitude; that is, we can write ξ = exp(iθ) for some θ, and so

ξk = exp(ikθ) = cos(kθ) + i sin(kθ).

Thus, any solution to the difference equation must have the form

ψk = γ cos(kθ) + µ sin(kθ).

Plugging in the boundary conditions, we find that γ = 0, and θ = lπ/(n+1)
for some l. Thus, the normalized eigenvectors of T are zj with entries

zj(k) =

√
2

n+ 1
sin

(
jkπ

n+ 1

)
=

√
2

n+ 1
sin((jπ)xk)

and the corresponding eigenvalues are

λj = 2

(
1− cos

πj

n+ 1

)
.

For j � n, Taylor expansion gives that

λj = h2(πj)2 +O
(
h4(πj)4

)
.

By way of comparison, the continuous Dirichlet eigenvalue problem

−d
2w

dx2
= µw, w(0) = w(1) = 0

has eigenfunctions of the form

wj = sin(jπx), µj = (jπ)2.

Thus, the eigenvectors of h−2T are exactly the sampled eigenfunctions of
−d2/dx2 on [0, 1] with Dirichlet boundary conditions, while the extremal
eigenvalues of h−2T satisfy

h−2λj = µj +O(µ2
jh

2).

Bindel, Fall 2022 Matrix Computations

3 The 2D model problem
The problem with the 1D Poisson equation is that it doesn’t make a terribly
convincing challenge – since it is a symmetric positive definite tridiagonal,
we can solve it in linear time with Gaussian elimination! So let us turn to
a slightly more complicated example: the Poisson equation in 2D. Before
discussing the 2D Poisson equation, though, let us digress to introduce two
useful notations: the vec operator and the Kronecker product.

The vec operator simply lists the entries of a matrix (or an array with
more than two indices) in column-major order; for example,

vec

[
a b
c d

]
=

a
c
b
d

 .
The Kronecker product A⊗B of two matrices is a block matrix where each
block is a scalar multiple of B:

A⊗ B =

a11B a12B . . .
a21B a22B . . .

...

The Kronecker product and the vec operation interact with each other as
follows:

(B ⊗ A) vec(C) = vec(ACBT).

The Kronecker product also satisfies the identities

(A⊗ B)T = AT ⊗ BT

(A⊗ B)(C ×D) = (AB)⊗ (CD)

which implies, for example, that the Schur form of a Kronecker product is a
Kronecker product of Schur forms:

(UA ⊗ UB)
∗(A⊗ B)(UA ⊗ UB) = TA ⊗ TB.

As one illustrative application of Kronecker products, consider the Sylvester
operator X 7→ AX −XB. Using Kronecker products, we can write this as

vec(AX −XB) = (A⊗ I − I ⊗ B) vec(X).

Bindel, Fall 2022 Matrix Computations

Note that if A = UATAU
∗
A and B = UBTBU

∗
B are Schur forms, then

A⊗ I − I ⊗ B = (UA ⊗ UB)(TA ⊗ I − I ⊗ TB)(UA ⊗ UB)
∗,

and TA ⊗ I − TB ⊗ I is an upper triangular matrix. This transformation,
followed by a triangular solve, is essentially what you did in problem 3 of
your last homework.

Now let us return to the model 2D Poisson discretization. This is an
approximation to the equation

−∇2u = −
(
∂2u

∂x2
+
∂2u

∂y2

)
= f

for (x, y) ∈ (0, 1)2, with Dirichlet boundary conditions u(x, y) = 0 for |x| = 1
or |y| = 1. If we discretize on a regular mesh with interior points indexed by
1 ≤ i ≤ n and 1 ≤ j ≤ n, we can write the solution as a matrix U . When we
discretize, we have a partial derivative in x corresponding to acting across
columns of U , and a partial derivative in y corresponding to acting across
rows of U . We can write this operation as

TU + UT = h2F,

or as an ordinary matrix equation of dimension N = n2

(T ⊗ I + I ⊗ T) vec(U) = h2 vec(F).

What properties do we have for Tn×n = T ⊗ I + I ⊗ T?

1. Tn×n is symmetric and positive definite.

2. Tn×n is (non-strictly) diagonally dominant.

3. If (zj, λj) are the eigenpairs for T , those for Tn×n are (zj ⊗ zl, λj + λl).

4. The condition number of Tn×n scales like O(h−2).

4 Methods for solving the 2D model problem
Suppose we wanted to solve the 2D model problem in practice. What meth-
ods do we have at our disposal so far? Of course, we have several direct
methods

Bindel, Fall 2022 Matrix Computations

1. We could run Gaussian elimination on Tn×n. This takes time O(N3),
where N = n2.

2. The matrix Tn×n is also a banded matrix with bandwidth n so we could
do band Gaussian elimination at a cost of O(N2n) = O(N2.5).

3. A sparse direct solve using nested dissection ordering runs in O(N1.5).

4. Treating the problem as a Sylvester equation and running Bartels-
Stewart requires O(n3) time to find the eigensystem of T and to trans-
form U and F using the eigenvector matrix; and O(n2) time for the
subsequent (diagonal) linear solve.

5. The eigenvector matrix for T corresponds to a discrete sine transform,
which is closely related to the FFT; and we know the eigenvalues in
closed form. This allows us to reduce the time for Bartels-Stewart to
O(n2 log n) = O(N logN).

In the coming lectures, we turn to a variety of iterative methods. These
methods do not produce an exact answer, but rather produce a sequence
of ever-better approximations to the truth. With appropriate parameter
choices, the time to reduce the error by a constant factor scales like1

Jacobi N2

Gauss-Seidel N2

CG N3/2

SOR N3/2

SSOR with Chebyshev acceleration N5/4

Multigrid N

For both the direct and iterative methods, the more structure we use, the
faster we can go.

5 Iteration basics
An iterative solver for Ax = b is produces a sequence of approximations
x(k) → x. We always stop after finitely many steps, based on some conver-
gence criterion, e.g.

1See Table 6.1 of Applied Numerical Linear Algebra by J. Demmel.

Bindel, Fall 2022 Matrix Computations

• A residual estimate reached some threshold tolerance (relative to b or
to the initial residual).

• An error estimate reached some threshold tolerance (usually relative to
the initial error estimate).

• We reach a maximum iteration count.

We say we have solved the problem when some error-related tolerance is
satisfied. We can often reason about the cost per step in a simple way, but
estimating the steps to a solution can be quite complicated. It depends on
the nature of the iteration, the structure of the problem, the norms used to
judge convergence, and the problem tolerances.

The oldest and simplest iterations for solving linear systems are station-
ary iterations (a.k.a. fixed point iterations) and more generally relaxation
iterations. In many cases, these iterations have been supplanted by more
sophisticated methods (such as Krylov subspace methods), but they remain
a useful building block. Moreover, what is old has a way of becoming new
again; many of the classic iterations from the 1950s and 1960s are seeing new
life in applications to machine learning and large scale optimization problems.

6 Stationary iterations
Stationary iterations are so named because the solution to a linear system is
expressed as a stationary point (fixed point) of

x(k+1) = F (x(k)).

A sufficient (though not necessary) condition for convergence is that the
mapping is a contraction, i.e. there is an α < 1 such that for all x, y in the
vector space,

‖F (x)− F (y)‖ ≤ α‖x− y‖.
The constant α is the rate of convergence.

If we are solving a linear equation Ax = b, it generally makes sense to
write a fixed point iteration where the mapping F is affine. We can write
any such iteration via a splitting of the matrix A, i.e. by writing A =M −N
with M nonsingular. Then we rewrite Ax = b as

Mx = Nx+ b,

Bindel, Fall 2022 Matrix Computations

and the fixed point iteration is

Mx(k+1) = Nx(k) + b,

which we may rewrite as

x(k+1) = x(k) +M−1(b− Ax(k)).

6.1 Error iteration and convergence
We derive an error iteration by subtracting the fixed point equation from the
iteration equation

Mx(k+1) = Nx(k) + b

−[Mx = Nx+ b]

Me(k+1) = Ne(k)

or e(k+1) = Re(k) where R ≡ M−1N is the iteration matrix. A sufficient
condition for convergence is that ‖R‖ < 1 in some operator norm. The
necessary and sufficient condition is that ρ(R) < 1, where the spectral radius
ρ(R) is defined as max |λ| over all eigenvalues λ of R.

The choice of M is key to the success of an iterative method. Ideally, we
want it to be easy to solve linear systems with M (low set-up time for any
initial factorizations, and a low cost per iteration to solve), but we also want
R to have a small norm or spectral radius. Often, there is a direct tension
between these two. For example, the “best” choice of M from the perspective
of iteration count is M = A. But this is a silly thing to do: the iteration
converges after one step, but that step is to solve Ax = b!

6.2 Complexity of stationary iterations
What is the cost to “solve” a system of linear equations using a stationary
iteration? We never exactly solve the system, so we need a convergence
criterion to address this problem. Let us instead ask the time to satisfy
‖e(k)‖ ≤ ϵ‖e(0)‖, where ‖e(0)‖ is the initial error. Supposing ‖R‖ < 1, we
know

‖e(k)‖ ≤ ‖R‖k‖e(0)‖,
so the criterion should be met after dlog(ϵ)/ log(‖R‖)e steps. While norms
on a finite-dimensional space are all equivalent, the constants involved may

Bindel, Fall 2022 Matrix Computations

depend on the dimension of the space. Therefore, when we analyze the
complexity of a stationary iteration, we must specify the family of norms (of
either the error or the residual) that we are using to judge convergence.

The cost per step depends on the time to solve a linear system with M and
the time to form a residual. For many of the basic stationary iterations, the
time per step is O(nnz(A)), where nnz(A) is the number of nonzero elements
in the matrix A. The number of steps, though, depends very strongly on not
just the number of nonzeros, but more detailed properties of A. Therefore, we
generally cannot describe the asymptotic complexity of an iterative method
except in the context of a very specific family of matrices (such as the 2D
Poisson model problem).

7 The classical iterations
One of the simplest stationary iterations is Richardson iteration, in which M
is chosen to be proportional to the identity:

x(k+1) = x(k) + ω(b− Ax(k))

= (I − ωA)x(k) + ωb.

The iteration matrix in this case is simply R = I−ωA. If A is symmetric and
positive definite, we can always make Richardson iteration converge with an
appropriate ω, though the convergence may be heart-breakingly slow.

Let A = D − L − U , where D is diagonal, L is strictly lower triangular,
and U is strictly upper triangular. Jacobi iteration takes M = D. When we
discuss multigrid, we will also see damped Jacobi, for which M = ω−1D with
ω < 1. Damped Jacobi is equivalent to moving in the Jacobi direction by
a fraction ω of the usual step length. Like Richardson, we can always make
(damped) Jacobi converge for SPD matrices; the method also converges for
A strictly diagonally dominant.

The Gauss-Seidel iteration incorporates a little more of A into M , taking
M = D − L. For A symmetric and positive definite, this generally yields
about twice the rate of convergence of Jacobi; and it is not necessary to damp
the method to obtain convergence. However, Gauss-Seidel is less friendly to
parallel computing because the triangular solve involves computing in a strict
order.

Bindel, Fall 2022 Matrix Computations

7.1 Splitting and sweeping
While we typically analyze stationary methods in terms of a splitting, that is
not always how we implement them. We can think of either Jacobi or Gauss-
Seidel as a sweep over the variables, in which we update the value of variable
i using the ith equation and using a guess for all the other variables. In the
Jacobi iteration, the guess for the other variables comes from the previous
step; in Gauss-Seidel, the guess for the other variables involves whatever our
most up-to-date information might be.

7.2 Over-relaxation
In the Jacobi iteration, we take M = D; in Gauss-Seidel, we take M = D−L.
In general, Gauss-Seidel works better than Jacobi. So if we go even further
in the “Gauss-Seidel” direction, perhaps we will do better still? This is the
idea behind successive over-relaxation, which uses the splitting M = D−ωL
for ω > 1. The case ω < 1 is called under-relaxation.

The iteration converges for positive definite A for any ω ∈ (0, 2). The
optimal choice is problem-dependent; but it is rarely of interest any more,
since SOR is mostly used to accelerate more sophisticated iterative methods.
Indeed, the most widely-used variant of SOR involves a forward sweep and
a backward sweep; this SSOR iteration applied to an SPD A matrix yields
an SPD splitting matrix M , and can therefore be used to accelerate the
conjugate gradient method (which depends on this structure).

7.3 Red-black ordering
In Jacobi iteration, we can compute the updates for each equation indepen-
dently of all other updates — order does not matter, and so the method is
ripe for parallelism within one sweep2 In general, though, Gauss-Seidel and
over-relaxation methods depend on the order in which we update variables.
The red-black ordering (or more general multi-color ordering) trick involves
re-ordering the unknowns in our matrix by “color,” where each unknown is
assigned a color such that no neighbor in the graph of the matrix has the
same color. In the 2D Poisson case, this can be achieved with two colors,
usually dubbed “red” and “black,” applied in a checkerboard pattern.

2There is actually not enough work per sweep to make this worthwhile with ordinary
Jacobi, usually, but it is worthwhile if we deal with the block variants.

Bindel, Fall 2022 Matrix Computations

7.4 Block iterations
So far, we have restricted our attention to point relaxation methods that
update a single variable at a time. Block versions of Jacobi and Gauss-Seidel
have exactly the same flavor as the regular versions, but they update a subset
of variables simultaneously. These methods correspond to a splitting with
M equal to the block diagonal or block lower triangular part of A.

The block Jacobi and Gauss-Seidel methods update disjoint subsets of
variables. The Schwarz methods act on overlapping subsets It turns out
that a little overlap can have a surprisingly large benefit. The book Domain
Decomposition by Smith, Gropp, and Keyes provides a nice overview.

8 Convergence of stationary iterations
For general non-symmetric (and nonsingular) matrices, none of the classical
iterations is guaranteed to converge. But there are a few classes of prob-
lems for which we can say something about the convergence of the classical
iterations, and we survey some of these now.

8.1 Strictly row diagonally-dominant problems
Suppose A is strictly diagonally dominant. Then by definition, the iteration
matrix for Jacobi iteration (R = D−1(L + U)) must satisfy ‖R‖∞ < 1, and
therefore Jacobi iteration converges in this norm. A bound on the rate of con-
vergence has to do with the strength of the diagonal dominance. Moreover,
one can show (though we will not) that in this case

‖(D − L)−1U‖∞ ≤ ‖D−1(L+ U)‖∞ < 1,

so Gauss-Seidel converges at least as quickly as Jacobi. The Richardson
iteration is also guaranteed to converge, at least so long as ω < 1/(maxi |aii|),
since this is sufficient to guarantee that all the Gershgorin disks of I − ωA
will remain within the unit circle.

Bindel, Fall 2022 Matrix Computations

8.2 Symmetric and positive definite problems
8.2.1 Richardson iteration

If A is SPD with eigenvalues 0 < λ1 < . . . < λn, then Richardson iteration
satisfies

‖R‖2 = max(|1− ωλ1|, |1− ωλn|);

and the rate of convergence is optimal when ω = 2/(λ1 + λn), which yields

‖R‖2 = 1− 2λ1
λ1 + λn

= 1− 2

κ(A) + 1

If A is ill-conditioned, the iteration may be painfully slow.

8.2.2 Jacobi iteration

The error iteration for Jacobi is

e(k+1) = D−1(L+ U)e(k) = D−1(D − A)e(k).

If A is SPD, then so is D, and therefore it induces a norm; scaling the error
iteration by D1/2 gives

ê(k+1) = D−1/2(D − A)D−1/2ê(k),

where ê(k) = D1/2e(k) and

‖ê(k)‖2 = ‖e(k)‖D.

Therefore
‖e(k+1)‖D ≤ ‖D−1/2(D − A)D−1/2‖2‖e(k)‖D.

For A is symmetric and positive definite, we then have

‖D−1/2(D − A)D−1/2‖2 = max(|1− λ1|, |1− λn|),

where 0 < λ1 < . . . < λn are the eigenvalues of the pencil (A,D). We have
convergence when λn < 2, i.e. 2D − A is symmetric and positive definite.
Damped Jacobi, on the other hand, can always be made to converge for a
sufficiently large damping level ω.

The same analysis holds for block Jacobi.

Bindel, Fall 2022 Matrix Computations

8.2.3 Gauss-Seidel iteration

To understand the Gauss-Seidel convergence, it is useful to look at the linear
system Ax(∗) = b as the minimizer of the convex quadratic

ϕ(x) =
1

2
xTAx− xT b.

Now consider a given x and consider what happens if we update to x + sei
for some s. This gives the value

ϕ(x+ sei) = ϕ(x) +
aii
2
s2 + seTi Ax− sbi.

Minimizing with respect to s yields

aiis = bi − eTi Ax

or
aii(xi + s) = bi −

∑
j ̸=i

aijxj.

But this is precisely the Gauss-Seidel update! Hence, Gauss-Seidel for a
positive definite system corresponds to optimization of ϕ by cyclic coordinate
descent. The method decreases ϕ at each coordinate step, and each sweep is
guaranteed to sufficiently reduce the objective so that we ultimately converge.

The same analysis holds for block Gauss-Seidel.

8.3 Convergence on the 2D model problem
In the case of the 2D model problem, recall that the eigenvalues are

λi,j = 2 (2− cos(πih)− cos(πjh))

The extreme eigenvalues are

λ1,1 = 2h2π2 +O(h4)

and
λn,n = 4− 2h2π2 +O(h4).

The diagonal of Tn×n is simply 4I, so the Jacobi iteration matrix looks like

R =
1

4
(4I − Tn×n),

Bindel, Fall 2022 Matrix Computations

or which the eigenvalues are

λi,j(R) = −(cos(πih) + cos(πjh))/2,

and the spectral radius is

ρ(R) = cos(πh) = 1− π2h2

2
+O(h4)

Thus, the number of iterations to reduce the error by 1/e scales like

2

π2h2
=

2

π2
(n+ 1)2 = O(N);

and since each step takes O(N) time, the total time to reduce the error by a
constant factor scales like O(N2).

he successive overrelaxation iteration uses a splitting

M = ω−1(D − ωL̃) = ω−1D−1(I − ωL),

which yields an iteration matrix

RSOR = (I − ωL)−1((1− ω)I + ωU).

In general, this is rather awkward to deal with, since it is a nonsymmetric
matrix. However, for the model problem with a particular ordering of un-
knowns (red-black ordering), one has that the eigenvalues µ of RJ correspond
to the eigenvalues λ of RSOR via

(λ+ ω − 1)2 = λω2µ2.

For the case ω = 1 (Gauss-Seidel), this degenerates to

λ = µ2,

and so ρ(RGS) = ρ(RJ)
2. Consequently, each Gauss-Seidel iteration reduces

the error by the same amount as two Jacobi iterations, i.e. Gauss-Seidel
converges twice as fast on the model problem. This tends to be true for other
problems similar to the model problem, too. However, going from Jacobi
to Gauss-Seidel only improves the convergence rate by a constant factor; it
doesn’t improve the asymptotic complexity at all. However optimal ω (about

Bindel, Fall 2022 Matrix Computations

2−O(h)) gives us a spectral radius of 1−O(h) rather than 1−O(h2), allowing
us to accelerate convergence to O(N3/2).

The red-black ordering can be convenient for parallel implementation,
because allowing the red nodes (or black nodes) to be processed in any orer
gives more flexibility for different scheduling choices. But it is also a use-
ful choice for analysis. For example, in the red-black ordering, the model
problem looks like

A =

[
4I B
BT 4I

]
The preconditioner based on Jacobi iteration is

MJ =

[
4I 0
0 4I

]
,

which results in the iteration matrix

RJ =M−1
J (MJ − A) =

1

4

[
0 B
BT 0

]
.

The eigenvalues of RJ are thus plus or minus one quarter the singular values
of B. Note that this much would have been the same for more general
problems with the same structure!

I did not drag you in class through the rest of the analysis, and I would
not expect you to repeat it on an exam. Nonetheless, it may be worth writing
it out in order to satisfy the curious. The preconditioner for Gauss-Seidel is

MGS =

[
4I 0
BT 4I

]
;

and because of the relatively simple form of this matrix, we have

M−1
GS =

1

4

[
I 0

BT/4 I

]
.

The iteration matrix for Gauss-Seidel is

RGS =M−1
GS(MGS − A) =

[
0 B/4
0 − 1

16
BTB

]
,

which has several zero eigenvalues together with some eigenvalues that are
minus 1/16 times the squared singular values of BTB. Thus, as indicated

Bindel, Fall 2022 Matrix Computations

earlier, the spectral radius of RGS is the square of the spectral radius of RJ

(for the model problem).
The analysis for the general SOR case is slightly messier, but I’ll include

it here for completeness. The preconditioner is

MSOR =
1

ω

[
4I 0
ωBT 4I

]
,

and the inverse is
M−1

SOR =
ω

4

[
I 0

−ωBT/4 I

]
,

The iteration matrix is

RSOR =
1

4

[
I 0

−ωBT/4 I

] [
4(1− ω)I −ωB

0 4(1− ω)I

]
=

[
(1− ω)I −ωB/4

−(1− ω)ωBT/4 ω2BTB/16 + (1− ω)I

]
.

If λ is any eigenvalue of RSOR except 1 − ω, we can do partial Gaussian
elimination on the eigenvalue equation

(RSOR − µI)v = 0;

after eliminating the first block of variables, we have the residual system(
ω2

16
BTB − (λ+ ω − 1)I − (1− ω)ω2

16
BT ((1− ω − λ)I)−1B

)
v2 = 0,

Refactoring, we have[(
1− ω

λ+ ω − 1
+ 1

)
ω2

16
BTB − (λ+ ω − 1)I

]
v2 = 0.

From our earlier arguments, letting µ be an eigenvalue of the Jacobi matrix,
we know that µ2 is an eigenvalue of BTB/16. The corresponding eigenvalues
λ of RSOR must therefore satisfy(

1− ω

λ+ ω − 1
+ 1

)
ω2µ2 − (λ− ω − 1) = 0.

Multiplying through by λ− ω − 1, we have
(1− ω + λ+ ω − 1)ω2µ2 − (λ− ω − 1)2 = 0

or
λω2µ2 = (λ− ω − 1)2,

which is the formula noted before.

Bindel, Fall 2022 Matrix Computations

9 General relaxations
So far, we have mostly discussed stationary methods in we think of sweeping
through all the variables in some fixed order and updating a variable or block
of variables at a time. There is nothing that say that the order must be fixed,
though, if we are willing to forgo the analytical framework of splittings. There
are essentially two reasons that we might think to do this:

1. We decide which variable(s) to update next based on some adaptive
policy, such as which equations have the largest residual. This leads
to the Gauss-Southwell method. Various methods for fast (sublinear
time) personalized PageRank use this strategy.

2. We update variable(s) on multiple processors, communicating the changes
opportunistically. In this case, there may be no real rhyme or reason
to the order in which we see updates. These methods are called chaotic
relaxation or asynchronous relaxation approaches, and they have seen a
great deal of renewed interest over the past several years for both clas-
sical scientific computing problems (e.g. PDE solvers) and for machine
learning applications.

10 Alternating Direction Implicit
The alternating direction implicit approach to the model problem began life
as an operator-splitting approach to solving a time-domain diffusion problem.
At each step of an ordinary implicit time stepper for the heat equation, one
would solve a system of the form

(I +∆tT)x = b,

where ∆t is small and T is the 2D Laplacian operator. But note that if
T = Tx + Ty, then

(I +∆t/2Tx)(I +∆t/2Ty) = (I +∆tT +O(∆t)2);

hence, we commit only a small amount of error if instead of solving one system
with T we solve two half-step systems involving Tx and Ty, respectively, where
Tx and Ty are the discretizations of the derivative operator in the x and y
directions. This is known as the alternating direction method.

Bindel, Fall 2022 Matrix Computations

In practice, cycling between several different versions of the shift param-
eter (interpreted above as a time-step) can lead to very rapid convergence of
the ADI iteration. This beautiful classical result, which has deep connections
to the Zolotarev problem from approximation theory, has taken on renewed
usefulness in modern control theory and model reduction, where recent work
has connected ADI-type methods for Sylvester equations to various rational
Krylov methods.

The ADI method and its relations have also garnered many citations over
the past 5–10 years because of their role as prior art for various optimization
methods, such as the ADMM method.

	The need for model problems
	The 1D model problem
	The 2D model problem
	Methods for solving the 2D model problem
	Iteration basics
	Stationary iterations
	Error iteration and convergence
	Complexity of stationary iterations

	The classical iterations
	Splitting and sweeping
	Over-relaxation
	Red-black ordering
	Block iterations

	Convergence of stationary iterations
	Strictly row diagonally-dominant problems
	Symmetric and positive definite problems
	Richardson iteration
	Jacobi iteration
	Gauss-Seidel iteration

	Convergence on the 2D model problem

	General relaxations
	Alternating Direction Implicit

