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1 Sylvester equations
The Sylvester equation (or the special case of the Lyapunov equation) is a
matrix equation of the form

AX +XB = C

where A ∈ Rm×m, B ∈ Rn×n, B ∈ Rm×n, are known, and X ∈ Rm×n is to
be determined. The Sylvester equation has important applications in control
theory, and also plays a prominent role in the theory of several classes of
structured matrices.

On the surface of it, this is a simple system: the expressions AX and XB
are just linear in the elements of X, after all. Indeed, we can rewrite the
system as

(I ⊗ A+BT ⊗ I) vec(X) = vec(C),

where

vec(
[
x1 . . . xn

]
) =

x1
...
xn


is a vector of length mn composed by listing the elements of X in column-
major order, and the Kronecker product is defined by

F ⊗G =

f11G f12G . . .
f21G f22G . . .

... ... . . .

 .

Alas, solving this matrix equation by Gaussian elimination would cost O((mn)3).
Can we do better?

The Bartels-Stewart algorithm is a clever approach to the problem that
takes only O(max(m,n)3) time. The key is to compute the Schur factoriza-
tions

A = UATAU
∗
A B = UBTBU

∗
B

from which we obtain
TAX̃ + X̃TB = C̃
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where X̃ = U∗
AXUB and C̃ = U∗

ACUB. Column j of this system of equations
can be written as

(TA + tB,kkI)x̃k = c̃k −
k−1∑
j=1

x̃jtB,jk;

therefore, we can solve each column of x̃ in turn by a back-substitution
procedure that involves a triangular linear solve. We only run into trouble
if one of these systems is singular (or nearly so), corresponding to the case
where A and −B (nearly) have an eigenvalue in common.

1.1 Riccati equations
The Sylvester equation is a linear matrix equation whose solution is acceler-
ated via an intermediate eigendecomposition. The algebraic Riccati equation
is a quadratic matrix equation that also can be expressed via an eigenvalue
problem. The Riccati equation occurs in optimal control problems, as well
as some other places; for the continuous-time optimal control problem, we
would usually write

ATX +XA−XBR−1BTX +Q = 0

where R and Q are spd matrices representing cost functions, A and B are
general square matrices, and we seek a symmetric solution matrix X.

The key to thinking of the Riccati equation via eigenvalues is to write
the left hand side of the equation as a pure quadratic:[

I
X

] [
Q A
AT −BR−1BT

] [
I
X

]
= 0.

We can also characterize this by the relation[
Q A
AT −BR−1BT

] [
I
X

]
=

[
0 I
−I 0

] [
I
X

]
,

or, equivalently

Z =

[
A −BR−1BT

−Q −AT

]
, Z

[
I
X

]
=

[
I
X

]
L.
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That is, we want a specific basis of an invariant subspace of a Hamiltonian
matrix, i.e. a matrix Z such that

JZ symmetric, J ≡
[
0 I
−I 0

]
.

Hamiltonian eigenvalue problems show up in a surprising variety of places
in addition to optimal control. The theory of eigenvalue problems for Hamil-
tonian and skew-Hamiltonian matrices is reasonably well developed, and the
eigenvalues have a special symmetry to them. There is now good software
for these classes of problems that exploits the structure — though not in LA-
PACK. The right place to look for these solvers is in the SLICOT package.

2 Polynomial eigenvalue problems
A nonlinear eigenvalue problem is an equation of the form

T (λ)v = 0

where T : C → Cn×n is a matrix-valued function. The most common nonlin-
ear eigenvalue problems are polynomial eigenvalue problems in which T is a
polynomial; and most common among the polynomial eigenvalue problems
are the quadratic eigenvalue problems

(λ2M + λD +K)u = 0.

As the notation might suggest, one of the natural sources of quadratic eigen-
value problems is in the analysis of damped unforced vibrations in mechani-
cal (or other physical) systems. In this context, M , D, and K are the mass,
damping, and stiffness matrices, and the eigenvalue problem arises from the
search for special solutions to the equation

Mẍ+Dẋ+Kx = 0

where x(t) = u exp(λt). We note that the mass matrix is often symmetric
and positive definite; in this case, we can apply a change of variables to
convert to a problem in which the leading term involves an identity matrix.
We will assume this case for the remainder of our discussion.

When studying the solution of higher-order differential equations, a stan-
dard trick is to put the system into first-order form by introducing auxiliary
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variables for derivatives. For example, we would put our model second-order
unforced vibration equation into first-order form by introducing the variable
v = ẋ; then (assuming M = I), we have[

v̇
ẋ

]
=

[
−D −K
I 0

] [
v
x

]
.

Similarly, we can convert the quadratic eigenvalue problem into a standard
linear eigenvalue problem by introducing w = λu; then

λ

[
w
u

]
=

[
−D −K
I 0

] [
w
u

]
.

This process of converting a quadratic (or higher-order polynomial) eigen-
value problem into a linear eigenvalue problem in a higher-dimensional space
is called linearization (a somewhat unfortunate term, but the standard choice).
There are many ways to define the auxiliary variables, and hence many ways
to linearize a polynomial eigenvalue problem; the version we have described
is the companion linearization. Different linearizations are appropriate to
polynomial eigenvalue problems with different structure.

More generally, a “genuinely” nonlinear eigenvalue involves a matrix T (λ)
that depends on the spectral parameter λ as a more general non-rational
function. Typically, we restrict our attention to functions that are complex-
analytic in some domain of interest; these arise naturally in many applica-
tions, particularly in problems involving delay, radiation, and similar effects.
One thread in my own research has been to extend some of the theory we have
for the standard eigenvalue problem — results like Gershgorin and Bauer-
Fike — to this more general nonlinear case.

3 Pseudospectra
We conclude our discussion of eigenvalue-related ideas by revisiting the per-
turbation theory for the nonsymmetric eigenvalue problem from a somewhat
different perspective. In the symmetric case, if A− λ̂I is nearly singular (i.e.
(A− λ̂I)x̂ = r where ∥r∥ ≪ ∥A∥∥x̂∥), then λ̂ is close to one of the eigenval-
ues of A. But in the nonsymmetric case, A− λ̂I may become quite close to
singular even though λ̂ is quite far from any eigenvalues of A. The approxi-
mate null vector of A− λ̂I is sometimes called a quasi-mode, and dynamical
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systems defined via such a matrix A are often characterized by long-lived
transient dynamics that are well-described in terms of such quasi-modes.

In order to describe quasi-modes and long-lived transients, we need a
systematic way of thinking about “almost eigenvalues.” This leads us to the
idea of the ϵ-pseudospectrum:

Λϵ(A) = {z ∈ C : ∥(A− zI)−1∥ ≥ ϵ−1}.

This is equivalent to

Λϵ(A) = {z ∈ C : ∃E s.t. ∥E∥ < ϵ and (A+ E − zI) singular},

or, when the norm involved is the operator 2-norm,

Λϵ(A) = {x ∈ C : σmin(A− zI) < ϵ}.

There is a great deal of beautiful theory involving pseudospectra; as a guide
to the area, I highly recommend Spectra and Pseudospectra by Mark Embree
and Nick Trefethen.
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