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1 Symmetric eigenvalue basics
The symmetric (Hermitian) eigenvalue problem is to find nontrivial solutions
to

Ax = xλ

where A = A∗ is symmetric (Hermitian). The symmetric eigenvalue problem
satisfies several properties that we do not have in the general case:

• All eigenvalues are real.

• There are no non-trivial Jordan blocks.

• Eigenvectors associated with distinct eigenvalues are orthogonal.

It is worthwhile to make some arguments for these facts, drawing on ideas
we have developed already:

• For any v, v∗Av = v∗A∗v = ¯v∗Av, so v∗Av must be real; and we can
write any eigenvalue as v∗Av where v is the corresponding eigenvector
(normalized to unit length).

• If (A− λI)2v = 0 for λ ∈ R and v ̸= 0, then

0 = v∗(A− λI)2v = ∥(A− λI)v∥2 = 0;

and so (A − λI)v = 0 as well. But if λ is associated with a Jordan
block, there must be v ̸= 0 such that (A−λI)2v = 0 and (A−λI)v ̸= 0.

• If λ ̸= µ are eigenvalues associated with eigenvectors u and v, then

λu∗v = u∗Av = µu∗v.

But if λ ̸= µ, then (λ− µ)u∗v = 0 implies that u∗v = 0.

We write the complete eigendecomposition of A as

A = UΛU∗

where U is orthogonal or unitary and Λ is a real diagonal matrix. This is
simultaneously a Schur form and a Jordan form.
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More generally, if ⟨·, ·⟩ is an inner product on a vector space, the adjoint
of an operator A on that vector space is the operator A∗ s.t. for any v, w

⟨Av,w⟩ = ⟨v, A∗w⟩.

If A = A∗, then A is said to be self-adjoint. If a matrix A is self-adjoint with
respect to the M -inner product ⟨v, w⟩M = w∗Mv where M is Hermitian
positive definite, then H = MA is also Hermitian. In this case, we can
rewrite the eigenvalue problem

Ax = xλ

as
Hx = MAx = Mxλ.

This gives a generalized symmetric eigenvalue problem1. A standard example
involves the analysis of reversible Markov chains, for which the transition ma-
trix is self-adjoint with respect to the inner product defined by the invariant
measure.

For the generalized problem involving the matrix pencil (H,M), all eigen-
values are again real and there is a complete basis of eigenvectors; but these
eigenvectors are now M -orthogonal. That is, there exists U such that

U∗HU = Λ, U∗MU = I.

Generalized eigenvalue problems arise frequently in problems from mechan-
ics. Note that if M = RTR is a Cholesky factorization, then the generalized
eigenvalue problem for (H,M) is related to a standard symmetric eigenvalue
problem

Ĥ = R−THR−1;

if Ĥx = xλ, then Hy = Myλ where Ry = x. We may also note that
R−1ĤR = M−1H; that is Ĥ is related to A = M−1H by a similarity trans-
form. Particularly for the case when M is large and sparse, though, it may be
preferable to work with the generalized problem directly rather than convert-
ing to a standard eigenvalue problem, whether or not the latter is symmetric.

1The case where M is allowed to be indefinite is not much nicer than the general
nonsymmetric case.



Bindel, Fall 2022 Matrix Computations

The singular value decomposition may be associated with several different
symmetric eigenvalue problems. Suppose A ∈ Rn×n has the SVD A = UΣV T ;
then

ATA = V Σ2V T

AAT = UΣ2UT[
0 A
AT 0

]
=

1

2

[
U U
V −V

] [
Σ 0
0 −Σ

] [
U U
V −V

]T
.

The picture is marginally more complicated when A is rectangular — but
only marginally.

2 Variational approaches
The Rayleigh quotient plays a central role in the theory of the symmetric
eigenvalue problem. Recall that the Rayleigh quotient is

ρA(v) =
v∗Av

v∗v
.

Substituting in A = UΛU∗ and (without loss of generality) assuming w =
U∗v is unit length, we have

ρA(v) =
N∑
i=1

λi|wi|2, with
N∑
i=1

|wi|2 = 1.

That is, the Rayleigh quotient is a weighted average of the eigenvalues. Max-
imizing or minimizing the Rayleigh quotient therefore yields the largest and
the smallest eigenvalues, respectively; more generally, for a fixed A,

δρA(v) =
2

∥v∥2
δ∗v (Av − vρA(v)) ,

and so at a stationary v (where all derivatives are zero), we satisfy the eigen-
value equation

Av = vρ(A).

The eigenvalues are the stationary values of ρA; the eigenvectors are station-
ary vectors.
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The Rayleigh quotient is homogeneous of degree zero; that is, it is invari-
ant under scaling of the argument, so ρA(v) = ρA(τv) for any τ ̸= 0. Hence,
rather than consider the problem of finding stationary points of ρA gener-
ally, we might restrict our attention to the unit sphere. That is, consider the
Lagrangian function

L(v, λ) = v∗Av − λ(v∗v − 1);

taking variations gives
δL = 2δv∗(Av − λv)− δλ(v∗v − 1)

which is zero only if Av = λv and v is normalized to unit length. In this for-
mulation, the eigenvalue is identical to the Lagrange multiplier that enforces
the constraint.

The notion of a Rayleigh quotient generalizes to pencils. If M is Hermi-
tian and positive definite, then

ρA,M(v) =
v∗Av

v∗Mv
is a weighted average of generalized eigenvalues, and the stationary vectors
satisfy the generalized eigenvalue problem

Av = MvρA,M(v).

We can also restrict to the ellipsoid ∥v∥2M = 1, i.e. consider the stationary
points of the Lagrangian

L(v, λ) = v∗Av − λ(v∗Mv − 1),

which again yields a generalized eigenvalue problem.
The analogous construction for the SVD is

ϕ(u, v) =
u∗Av

∥u∥∥v∥
or, thinking in terms of a constrained optimization problem,

L(u, v, λ, µ) = u∗Av − λ(u∗u− 1)− µ(v∗v − 1).

Taking variations gives
δL = δu∗(Av − 2λu) + δv∗(A∗u− 2µv)− δλ(u∗u− 1)− δµ(v∗v − 1),

and so Av ∝ u and A∗u ∝ v. Combining these observations gives A∗Av ∝ v,
AA∗u ∝ u, which we recognize as one of the standard eigenvalue problem
formulations for the SVD, with the squared singular values as the constant
of proportionality.
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3 Minimax and interlacing
The Rayleigh quotient is a building block for a great deal of theory. One
step beyond the basic characterization of eigenvalues as stationary points of
a Rayleigh quotient, we have the Courant-Fischer minimax theorem:
Theorem 1. If λ1 ≥ λ2 ≥ . . . ≥ λn, then we can characterize the eigenvalues
via optimizations over subspaces V:

λk = max
dimV=k

(
min
0 ̸=v∈V

ρA(v)

)
= min

dimV=n−k+1

(
max
0 ̸=v∈V

ρA(v)

)
.

Proof. Write A = UΛU∗ where U is a unitary matrix of eigenvectors. If v is
a unit vector, so is x = U∗v, and we have

ρA(v) = x∗Λx =
n∑

j=1

λj|xj|2,

i.e. ρA(v) is a weighted average of the eigenvalues of A. If V is a k-dimensional
subspace, then we can find a unit vector v ∈ V that satisfies the k − 1
constraints (U∗v)j = 0 for j = 1 through k − 1 (i.e. v is orthogonal to the
invariant subspace associated with the first k − 1 eigenvectors). For this v,
ρA(v) is a weighted average of λk, λk+1, . . . , λn, so ρA(v) ≤ λk. Therefore,

max
dimV=k

(
min
0 ̸=v∈V

ρA(v)

)
≤ λk.

Now, if V is the range space of the first k columns of U , then for any v ∈ V
we have that ρA(v) is a weighted average of the first k eigenvalues, which
attains the minimal value λk when we choose v = uk.

One piece of the minimax theorem is that given any k-dimensional sub-
space V , the smallest value of the Rayleigh quotient over that subspace is
a lower bound on λk and an upper bound on λn−k+1. Taking this one step
further, we have the Cauchy interlace theorem, which relates the eigenvalues
of a block Rayleigh quotient to the eigenvalues of the corresponding matrix.
Theorem 2. Suppose A is real symmetric (or Hermitian), and let V be
a matrix with m orthonormal columns. Then the eigenvalues of W ∗AW
interlace the eigenvalues of A; that is, if A has eigenvalues α1 ≥ α2 ≥ . . . ≥
αn and W ∗AW has eigenvalues βj, then

βj ∈ [αn−m+j, αj].
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Proof. Suppose A ∈ Cn×n and L ∈ Cm×m. The matrix W maps Cm to
Cn, so for each k-dimensional subspace V ⊆ Cm there is a corresponding
k-dimensional subspace of WV ⊆ Cn. Thus,

βj = max
dimV=k

(
min
0 ̸=v∈V

ρL(v)

)
= max

dimV=k

(
min

0 ̸=v∈WV
ρA(v)

)
≤ αk

and similarly

βj = min
dimV=m−k+1

(
max
0 ̸=v∈V

ρL(v)

)
= min

dimV=m−k+1

(
max

0 ̸=v∈WV
ρA(v)

)
= min

dimV=n−(k+(n−m))+1

(
max

0 ̸=v∈WV
ρA(v)

)
≥ αn−m+k

Another application of the minimax theorem is due to Weyl: if we write
λk(A) for the kth largest eigenvalue of a symmetric A, then for any symmetric
A and E,

|λk(A+ E)− λk(A)| ≤ ∥E∥2.
A related theorem is the Wielandt-Hoffman theorem:

n∑
i=1

(λi(A+ E)− λi(A))
2 ≤ ∥E∥2F .

Both these theorems provide strong information about the spectrum relative
to what we have in the nonsymmetric case (e.g. from Bauer-Fike). Not only
do we know that each eigenvalue of A + E is close to some eigenvalue of
A, but we know that we can put the eigenvalues of A and A + E into one-
to-one correspondence. So for the eigenvalues in the symmetric case, small
backward error implies small forward error!

As an aside, note that if v̂ is an approximate eigenvector and λ̂ = ρA(v̂)
for a symmetric A, then we can find an explicit form for a backward error E
such that

(A+ E)v̂ = v̂λ̂.

by evaluate the residual r = Av − vλ and writing E = rv∗ + vr∗. So in the
symmetric case, a small residual implies that we are near an eigenvalue. On
the other hand, it says little about the corresponding eigenvector, which may
still be very sensitive to perturbations if it is associated with an eigenvalue
that is close to other eigenvalues.
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4 Sensitivity of invariant subspaces
The eigenvalues of a symmetric matrix are perfectly conditioned. What of the
eigenvectors (or, more generally, the invariant subspaces)? Here the picture
is more complex, and involves spectral gaps. Suppose u is an eigenvector of
A associated with eigenvalue µ, and the nearest other eigenvalue is at least
γ apart. Then there is a perturbation E with ∥E∥2 = γ/2 for which the
eigenvalue at µ and the nearest eigenvalue coalesce.

A more refined picture is given by Davis and Kahan and covered in many
textbooks since (I recommend those of Parlett and of Stewart). Let AU = UΛ
and ÂÛ = Û Λ̂, and define R = ∥ÂU − UΛ∥. Then

∥ sinΘ(U, (̂U))∥F ≤ ∥R∥F
δ

where δ is the gap between the eigenvalues in Λ and the rest of the spectrum.
If we enforce a gap between an interval containing the eigenvalues in Λ and
the rest of the spectrum, we can change all the Frobenius norms into 2-
norms (or any other unitarily invariant norm). The matrix sinΘ(U, Û) is the
matrix of sines of the canonical angles between U and Û ; if both bases are
normalized, the cosines of these canonical angles are the singular values of
U∗Û .

The punchline for this is that an eigenvector or invariant subspace for
eigenvalues separated by a large spectral gap from everything else in the
specturm is nicely stable. But if the spectral gap is small, the vectors may
spin like crazy under perturbations.

5 Sylvester’s inertia theorem
The inertia ν(A) is a triple consisting of the number of positive, negative,
and zero eigenvalues of A. Sylvester’s inertia theorem says that inertia is pre-
served under nonsingular congruence transformations, i.e. transformations of
the form

M = V ∗AV

where V is nonsingular (but not necessarily unitary).
Congruence transformations are significant because they are the natural

transformations for quadratic forms defined by symmetric matrices; and the
invariance of inertia under congruence says something about the invariance
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of the shape of a quadratic form under a change of basis. For example, if A
is a positive (negative) definite matrix, then the quadratic form

ϕ(x) = x∗Ax

defines a concave (convex) bowl; and ϕ(V x) = x∗(V ∗AV )x has the same
shape.

As with almost anything else related to the symmetric eigenvalue prob-
lem, the minimax characterization is the key to proving Sylvester’s inertia
theorem. The key observation is that if M = V ∗AV and A has k positive
eigenvalues, then the minimax theorem gives us a k-dimensional subspace W+

on which A is positive definite (i.e. if W is a basis, then z∗(W ∗AW )z > 0
for any nonzero z). The matrix M also has a k-dimensional space on which
it is positive definite, namely V −1W . Similarly, M and A both have (n− k)-
dimensional spaces on which they are negative semidefinite. So the number
of positive eigenvalues of M is k, just as the number of positive eigenvalues
of A is k.
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