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1 Road map
Last lecture had two major themes:

1. We discussed power iteration and various ways of speeding it up through
spectral transformations, particularly shift-invert transformations. We
also pointed out that Rayleigh quotients make excellent shifts (albeit
with extra factorization costs).

2. We discussed orthogonal iteration (aka simultaneous iteration).

This is a promising set of ingredients, but:

1. We are often as interested (or more) in eigenvalues as we are in eigen-
vectors, but our iterations so far are focused on the vectors and sub-
spaces.

2. One step of Rayleigh quotient iteration seems to cost O(n3). So does
one step of orthogonal iteration. This is very expensive.

3. We know how to use shifts to accelerate the convergence of power
iteration (with Rayleigh quotients as a good source of shifts). But
while this gives good local convergence, it’s unclear how to get good
global convergence. It’s also unclear what we should do to converge to
complex conjugate eigenpairs of real matrices.

In this lecture, we will treat each of these issues in turn.

2 Orthogonal iteration re-interpreted, take 1
Consider the orthogonal iteration as repeatedly applying a mapping Q 7→ Q′

given by
AQ = Q′R.

Last time, we observed that

AQ:,1:k = Q′
:,1:kR1:k,1:k,
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i.e. this is equivalent to doing orthogonal iteration with subspaces of size k
for k = 1, 2, . . ..

When Q is a unitary matrix, we can take the inverse conjugate transpose
of both sides to get that

A−∗Q = Q′R−∗.

Now using the lower triangularity of R−∗, we observe that

A−∗Q:,k:n = Q′
:,k:nR

−∗
k:n,k:n

for k = 1, 2, . . .. That is, just as the first k columns are undergoing subspace
iteration with A, the last k columns are undergoing subspace iteration with
A−∗. In particular, the last column of Q is undergoing power iteration with
a (conjugate) inverse transform! And if we want to apply a (conjugtate)
shift-invert transform, we need only consider iteration with

Q 7→ Q′ via (A− σI)Q = Q′R.

3 Orthogonal iteration re-interpreted, take 2
Recall the Rayleigh quotient

ρA(u) =
u∗Au

u∗u
.

When u is an eigenvector, the Rayleigh quotient is the associated eigenvalue.
The block analogue of the Rayleigh quotient for U with orthonormal columns
is

PA(U) = U∗AU,

and f the columns of U span an invariant subspace, we have AU = UPA(U). If
U is the unitary factor in the Schur form AU = UT , then we have PA(U) = T
is the upper triangular factor.

Now, consider one step of orthogonal iteration (aka subspace iteration
aka simultaneous iteration) as a mapping Q 7→ Q′ given by AQ = Q′R, and
let Q be such that Q′ = QQ. As the iteration proceeds, the columns of Q
converge to nested invariant subspaces for eigenvalues of different magnitude.
What happens to the associated block Rayleigh quotients? Observe that

PA(Q) = Q∗AQ = (Q∗Q′)R = QR

PA(Q
′) = Q′∗(AQQ∗)Q′ = RQ
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Therefore, we can get from PA(Q) to PA(Q
′) via

PA(Q) = QR, PA(Q
′) = RQ.

This mapping, where we compute a QR factorization and then multiply the
factors in the reverse order, is the basic QR iteration.

4 Hessenberg matrices and QR steps in O(n2)

A matrix H is said to be upper Hessenberg if it has nonzeros only in the
upper triangle and the first subdiagonal. For example, the nonzero structure
of a 5-by-5 Hessenberg matrix is

× × × × ×
× × × × ×

× × × ×
× × ×

× ×

 .

For any square matrix A, we can find a unitarily similar Hessenberg matrix
H = Q∗AQ by applying Householder transformations on the left and right
in a symmetric fashion.

A Hessenberg matrix H is very nearly upper triangular, and is an inter-
esting object in its own right for many applications. For example, in control
theory, one sometimes would like to evaluate a transfer function

h(s) = cT (sI − A)−1b+ d

for many different values of s. Done naively, it looks like each each evaluation
would require O(n3) time in order to get a factorization of sI − A; but if
H = Q∗AQ is upper Hessenberg, we can write

h(s) = (Qc)∗(sI −H)−1(Qb) + d,

and the Hessenberg structure of sI−H allows us to do Gaussian elimination
on it in O(n2) time. Note that this also means that we can do shift-invert
power method steps on H in O(n2) time!

Just as it makes it cheap to do Gaussian elimination, the special structure
of the Hessenberg matrix also makes the Householder QR routine very eco-
nomical. The Householder reflection computed in order to introduce a zero
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in the (j + 1, j) entry needs only to operate on rows j and j + 1. Therefore,
we have

Q∗H = Wn−1Wn−2 . . .W1H = R,

where Wj is a Householder reflection that operates only on rows j and j+1.
Computing R costs O(n2) time, since each Wj only affects two rows (O(n)
data). Now, note that

RQ = R(W1W2 . . .Wn−1);

that is, RQ is computed by an operation that first mixes the first two
columns, then the second two columns, and so on. The only subdiagonal
entries that can be introduced in this process lie on the first subdiagonal,
and so RQ is again a Hessenberg matrix. Therefore, one step of QR iter-
ation on a Hessenberg matrix results in another Hessenberg matrix, and a
Hessenberg QR step can be performed in O(n2) time.

5 Shifting gears
Henceforth, we consider Hessenberg iterates A(k) that we are trying to drive
toward the quasi-triangular factor in a real Schur form.

The connection from inverse iteration to orthogonal iteration (and thus
to QR iteration) gives us a way to incorporate the shift-invert strategy into
QR iteration: simply run QR on the matrix A− σI, and the (n, n) entry of
the iterates (which corresponds to a Rayleigh quotient with an increasingly-
good approximate row eigenvector) should start to converge to λ− σ, where
λ is the eigenvalue nearest σ. Put differently, we can run the iteration

Q(k)R(k) = A(k−1) − σI

A(k) = R(k)Q(k) + σI.

If we choose a good shift, then the lower right corner entry of A(k) should
converge to the eigenvalue closest to σ in fairly short order, and the rest of
the elements in the last row should converge to zero.

The shift-invert power iteration converges fastest when we choose a shift
that is close to the eigenvalue that we want. We can do even better if we
choose a shift adaptively, which was the basis for running Rayleigh quotient
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iteration. The same idea is the basis for the shifted QR iteration:

Q(k)R(k) = A(k−1) − σkI(1)
A(k) = R(k)Q(k) + σkI.(2)

This iteration is equivalent to computing

Q(k)R(k) =
n∏

j=1

(A− σjI)

A(k) = (Q(k))∗A(Q(k))

Q(k) = Q(k)Q(k−1) . . . Q(1).

What should we use for the shift parameters σk? A natural choice is
to use σk = e∗nA

(k−1)en, which is the same as σk = (Q(k)en)
∗A(Q(k)en), the

Rayleigh quotient based on the last column of Q(k). This simple shifted QR
iteration is equivalent to running Rayleigh iteration starting from an initial
vector of en, which we noted before is locally quadratically convergent.

6 Double trouble
The simple shift strategy we described in the previous section gives local
quadratic convergence, but it is not globally convergent. As a particularly
pesky example, consider what happens if we want to compute a complex
conjugate pair of eigenvalues of a real matrix. With our simple shifting
strategy, the QR iteration never produce a complex iterate, a complex shift,
or a complex eigenvalue. The best we can hope for is that our initial shift is
closer to both eigenvalues in the conjugate pair than it is to anything else in
the spectrum; in this case, we will most likely find that the last two columns
of Q(k) are converging to a basis for an invariant row subspace of A, and the
corresponding eigenvalues are the eigenvalues of the trailing 2-by-2 sub-block.

Fortunately, we know how to compute the eigenvalues of a 2-by-2 matrix!
This suggests the following shift strategy: let σk be one of the eigenvalues of
A(k)(n−1 : n, n−1 : n). Because this 2-by-2 problem can have complex roots
even when the matrix is real, this shift strategy allows the possibility that
we could converge to complex eigenvalues. On the other hand, if our original
matrix is real, perhaps we would like to consider the real Schur form, in which
U is a real matrix and T is block diagonal with 1-by-1 and 2-by-2 diagonal
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blocks that correspond, respectively, to real and complex eigenvalues. If we
shift with both roots of A(k)(n− 1 : n, n− 1 : n), equivalent to computing

Q(k)R(k) = (A(k−1) − σk+I)(A
(k−1) − σk−)

A(k) = (Q(k))∗A(k−1)Q(k).

There is one catch here: even if we started with A(0) in Hessenberg form, it
is unclear how to do this double-shift step in O(n2) time!

The following fact will prove our salvation: if we Q and V are both or-
thogonal matrices and QTAQ and V TAV are both (unreduced) Hessenberg1)
and the first column of Q is the same as the first column of V , then all suc-
cessive columns of Q are unit scalar multiples of the corresponding columns
of V . This is the implicit Q theorem. Practically, it means that we can do
any sort of shifted QR step we would like in the following way:

1. Apply as a similarity any transformations in the QR decomposition
that affect the leading submatrix (1-by-1 or 2-by-2).

2. Restore the resulting matrix to Hessenberg form without further trans-
formations to the leading submatrix.

In the first step, we effectively compute the first column of Q; in the second
step, we effectively compute the remaining columns. Certainly we compute
some transformation with the right leading column; and the implicit Q theo-
rem tells us that any such transformation is basically the one we would have
computed with an ordinary QR step.

Last time, we discussed the Wilkinson strategy of choosing as a shift one
of the roots of the trailing 2-by-2 submatrix of A(k) (the one closest to the
final entry). We also noted that if we want to convert to real Schur form, the
Wilkinson shift has the distinct disadvantage that it might launch us into
the complex plane. The Francis shift strategy is to simultaneously apply a
complex conjugate pair of shifts, essentially computing two steps together:

Q(k)R(k) = (A(k−1) − σkI)(A
(k−1) − σ̄kI)

= (A(k−1))2 − 2<(σk)A
(k−1) + |σk|2I

A(k) = (Q(k))∗A(k−1)(Q(k)).

1An unreduced Hessenberg matrix has no zeros on the first subdiagonal.
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When the Wilkinson shift is real, we let σk be the same as the Wilkinson
shift; when the Wilkinson strategy leads to a conjugate pair of possible shifts,
we use both, maintaining efficiency by doing the steps implicitly. Let’s now
make this implicit magic a little more explicit by building code for an implicit
double-shift QR step.

Our first step will be to construct the polynomial associated with the
Francis double-shift. In the case where the trailing 2-by-2 submatrix (or 2-
by-2 block Rayleigh quotient, if one prefers) has a complex pair of eigenvalues,
we just use its characteristic polynomial. Otherwise, we use the polynomial
associated with two steps with a Wilkinson shift.

The Francis double-shift strategy gives us coefficients bk and ck for a
quadratic function sk(z) = z2 + bkz + ck. We now want to compute

Q(k)R(k) = sk(A
(k−1)) = (A(k−1))2 + bkA

(k−1) + ckI

A(k) = (Q(k))∗A(k−1)(Q(k)).

The trick is to realize that all the iterates A(k) are Hessenberg, and the
Hessenberg form for a matrix is usually unique (up to signs). Therefore, we
compute the first Householder transformation W in a QR factorization of
sk(A

(k) explicitly. The first column of Q(k) is the same as the first column of
W . The remaining columns of Q(k) can be determined by the requirement
that A(k) is in Hessenberg form. We compute them implicitly by applying the
usual Hessenberg reduction algorithm to B = WA(k−1)W , taking advantage
of the fact that B has special structure to do O(n2) work. Each step of the
reduction moves a “bulge” down the diagonal by one.

In the LAPACK codes, the Francis double-shift strategy is mixed with
some “exceptional shifts” that occur every few iterations. These exceptional
shifts serve to keep the algorithm from getting stuck in certain pathological
situations (e.g. a cyclic permutation matrix).

7 Deflation
A sequence of implicit doubly-shifted QR steps with the Francis shift will
usually give us rapid convergence of a trailing 1-by-1 or 2-by-2 submatrix to
a block of a Schur factorization. As this happens, the trailing row (or two
rows) becomes very close to zero. When the values in these rows are close
enough to zero, we deflate by setting them equal to zero. This corresponds
to a small perturbation to the original problem.
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More careful deflation criteria are usually used in practice; see the book.
This criterion at least corresponds to small normwise perturbations to the
original problem, but it may result in less accurate estimates of small eigen-
values than we could obtain with a more aggressive criterion.

8 Stability of the method
Each step of the implicitly double-shifted QR iteration changes the matrix
only with orthogonal transformations (which are perfectly conditioned) or
deflations. Hence, the QR iteration is backward stable. However, this is
not the same as saying that the method is forward stable! For forward
stability, the conditioning of the eigenvalues is critical, and multiple (or nearly
multiple) eigenvalues of multiplicity m usually inherit an O(ϵ1/m) error, as
we saw in our earlier discussion of sensitivity.

The intermediate computations in the QR code as given above are prone
to scaling problems, and so the basic QR codes in LAPACK (dlahqr) uses
a more careful construction of a scaled copy of the first Householder trans-
formation.

9 The state of the art
The current state of the art in QR iterations is the LAPACK code dgehqr
written by Ralph Byers, which is based on an award-winning set of papers by
Braman, Byers, and Mathias. This code uses the following general strategy:

1. Run the basic QR iteration to find the eigenvalues of a trailing b × b
submatrix. Apply the transformations to the whole matrix, resulting
in a “spike” to the left of the triangularized portion.

2. Look for converged eigenvalues in the trailing submatrix by analyzing
the “spike” to find small elements. Deflate any eigenvalues found (and
there may be several). This is called aggressive early deflation.

3. Use several of the remaining eigenvalues from the Rayleigh quotient
block as a sequence of successive shifts. These can be run simultane-
ously by chasing a sequence of closely-spaced bulges down the main
diagonal. The similarity transformations associated are applied in a
blocky way to get good cache performance.
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