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1 Matrix nearness problems
A matrix nearness problem has the form

minimize ∥X − A∥ s.t. X ∈ Ω

or, equivalently,
minimize ∥E∥ s.t. A+ E ∈ Ω

where Ω is a set in matrix space (real or complex) and A is a target matrix.
The most frequent choice of norms are the Frobenius norm and the operator
2-norm (aka the spectral norm). Depending on the context, one may be
interested in simple bounds on the minimum value, an explicit formula or
characterization for the minimum value, characterization of any X (or E)
for which the minimum value is obtained, or an algorithm for computing or
estimating either the minimum value ∥E∥ or an explicit minimizer E.

Our treatment of matrix nearness problems is largely drawn from the ex-
cellent paper “Matrix nearness problems and applications” by Nick Higham,
appearing in Applications of Matrix Theory (Oxford University Press, 1989)
and available in PDF form from Higham’s web page.

2 Preliminaries
In most cases, the easiest norm to work with for matrix nearness problems
is the Frobenius norm, for a few reasons:

• The squared Frobenius norm is an inner product norm with respect to
the Frobenius inner product, and is everywhere differentiable (in the
real case), with

δ
[
∥A∥2F

]
= 2⟨δA,A⟩F = 2 tr(AT δA).

• The Frobenius norm is strictly convex. All norms are convex by homo-
geneity together with the triangle inequality; that is, for 0 ≤ α ≤ 1 we
have

∥αx+ (1− α)y∥ ≤ α∥x∥+ (1− α)∥y∥.
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But for the Frobenius norm (and the vector 2-norm), we have strict
inequality when x ̸= y and 0 < α < 1. Strict convexity allows us to
get uniqueness results for the minimizer in the Frobenius norm in some
cases where we do not have uniquess in other norms.

• The Frobenius norm is unitarily invariant, i.e.

∥PAQ∥F = ∥A∥F

whenever P,Q are unitary matrices. This means in particular that we
can use the SVD and related decompositions to simplify Frobenius-
norm nearness problems, since if A = UΣV ∗ is a singular value decom-
position for A, then ∥A∥F = ∥Σ∥F .

One sometimes sees useful nearness results with respect to general unitar-
ily invariant norms. The most common such norms are the Ky-Fan norms.
The Ky-Fan p norms have the form

∥A∥ = ∥σ∥p

where σ is the vector of singular values of A; the Frobenius norm and the
spectral norm are the Ky-Fan 2-norm and the Ky-Fan ∞-norm, respectively.
The Ky-Fan 1-norm (also called the nuclear norm) is also used in some ap-
plications. However, the spectral norm and the nuclear norm lack the differ-
entiability and strict convexity of the Frobenius norm.

3 Symmetry
A warm-up case is the question of the nearest symmetric matrix. The space
Rn×n of square matrices can be written as a direct sum of the n(n + 1)/2-
dimensional space of symmetric matrices (H = HT ) and the n(n − 1)/2-
dimensional space of skew matrix (K = −KT ). The two spaces are or-
thogonal to each other in the Frobenius inner product; and for any matrix
A ∈ Rn×n, there is a unique decomposition into a symmetric and a skew
symmetric part:

A = AH + AK , AH = AT
H , AK = −AT

K

where AH = (A + AT )/2 and AK = (A − AT )/2. The best symmetric
approximation to A in the Frobenius norm is therefore AH , since the residual
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AK is normal to the space of symmetric matrices. And by the Pythagorean
theorem, ∥A∥2F = ∥AH∥2F+∥AK∥2F , so ∥AK∥2F = ∥A−AH∥2F = ∥A∥2F−∥AH∥2F
is the distance from A to the closest symmetric matrix.

What if we are interested in other norms? The characterization of the
distance to symmetry is straightforward in any unitarily invariant norm: it
is always ∥A− AH∥ = ∥AK∥. To prove this, Fan and Hoffman used the fact
that unitary invariance implies that ∥A∥ = ∥AT∥, and so for any symmetric
Y

∥AK∥ =
1

2
∥(A− Y ) + (Y T − AT )∥

≤ 1

2
∥A− Y ∥+ 1

2
∥Y T − AT∥

≤ ∥A− Y ∥.

The minimum distance is achieved at X = AH , but it generally may be
achieved by other points, too – the uniquenss that we see in the Frobenius
norm doesn’t generalize. For example, consider

A =


0 −1
1 0

0.1
0.1


The symmetric part of this matrix is AH = diag(0, 0, 0.1, 0.1), but in the
spectral norm it is the same distance from A as the all zero matrix, for
example: ∥AK∥2 = ∥A∥2 = 1.

4 Distance to rank deficiency
Suppose A ∈ Rn×n, and consider the problem of finding the smallest E such
that a given x ̸= 0 is a null vector of A + E. Take any operator norm
associated with some vector norm, and let zT be a dual vector to x with
respect to the vector norm (i.e. ∥zT∥ = 1 in the appropriate dual norm and
zT z = ∥x∥). The smallest possible ∥E∥ in the operator norm is ∥Ax∥/∥x∥,
and this is attained at E = −AxzT . Now, if we minimize ∥Ax∥/∥x∥ over all
nonzero E, the minimum possible value is ∥A−1∥−1, which gives us that

min

{
∥E∥
∥A∥

: A+ E is singular
}

= κ(A)−1.
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That is, the inverse condition number can be seen as the relative distance to
singularity of the matrix A, giving us a nice geometric interpretation of the
condition number (and this geometric interpretation extends to many other
settings).

5 Low rank and Eckart-Young-Mirsky
Closely related to the distance of a square matrix to the nearest singular
matrix is the problem of distance to rank deficiency for a possibly rectangular
A ∈ Rm×n. Then the minimum distance to a rank k matrix is achieved by
the truncated SVD:

Ak = UkΣkV
T
k

where Uk and Vk consist of the first k columns of the singular vector matrices
U and V , and Σk is the diagonal matrix of the k largest singular values. In
the Frobenius norm, this was proved by Eckart and Young, and it was later
shown true in any unitarily invariant norm – hence it is called the Eckart-
Young-Mirsky theorem. We will discuss the Frobenius norm case.

Suppose ∥A − B∥2F is minimal, where B = XDY T , X,Y ∈ Rn×k have
orthonormal columns and D ∈ Rk×k is diagonal with non-negative entries.
Note that we can allow X and Y to deviate from having orthonormal columns,
but there will always exist some representation of the stated form (by the
SVD). Expanding the quadratic and playing with the cyclic property of traces
gives

ϕ(X,D, Y ) = ∥A−XDY T∥2F
= ∥A∥2F − 2 tr(ATXDY T ) + ∥XDY T∥2F
= ∥A∥2F − 2 tr(Y TAXD) + tr(Y TY DXTXD)

= ∥A∥2F − 2 tr(XTATY D) + tr(XTXDY TY D)

Differentiating with respect to X, Y , and D gives

δϕ = 2⟨D−Y TAX, δD⟩F +2⟨(Y D−AX)D, δY ⟩F +2⟨(XD−ATY )D, δX⟩F
Setting the gradient to zero, we have the stationary conditions

D = diag(Y TAX)

(Y D − AX)D = 0

(XD − ATY )D = 0
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If dj > 0, then the latter two equations give[
0 A
AT 0

] [
yj
xj

]
=

[
yj
xj

]
dj,

i.e. the columns of A solve an eigenvalue problem. In fact, as we will see
after the fall break, the solutions to this eigenvalue problem with positive
eigenvalues are exactly (up to choice of normalization)[

0 A
AT 0

] [
vj
uj

]
=

[
vj
uj

]
σj.

Therefore, the columns of X and Y must either satisfy yTj Axj = dj = 0 (in
which case they really contribute nothing to B) or they must correspond to
the singular vectors. Given this, we have that at a stationary point, UT (A−
B)V is a diagonal matrix of singular values with k of them “zeroed out”; the
best choice to zero out in order to minimize ∥A−B∥F = ∥UT (A−B)V ∥F is
obviously the k largest.

We will discuss Eckart-Young-Mirsky in more detail after the break, when
we talk about eigenvalue problems and the singular value decomposition.

6 Nearest symmetric positive semidefinite
Now consider the problem of finding the nearest symmetric positive definite
X to a given A. Taking the symmetric/skew symmetric decomposition of
A = AH + AK , we have

∥A−X∥2F = ∥AH −X∥2F + ∥AK∥2F ;

that is, we can just focus on the X that is nearest to the symmetric matrix
AH . Take the symmetric eigenvalue decomposition AH = QΛQT , and let
X̃ = QTXQ; then we seek to minimize ∥Λ − X̃∥2F subject to the constraint
that X̃ is positive semidefinite. A positive semidefinite matrix must have
non-negative diagonal entries, so the best choice we can make is to have X̃
be a diagonal matrix eith entries max(λi, 0).

7 Orthogonal nearness
We begin this section with a matrix decomposition closely related to the
SVD: the so-called polar decomposition. Suppose A ∈ Rm×n, and consider
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the economy SVD A = UΣV T . We can rewrite this as

A = (UV T )(V ΣV T ) = QH

where Q = UV T has orthonormal columns and H = V ΣV T is symmetric
and positive (semi)definite. This gives us a generalization of writing a vector
as a unit vector times a non-negative length.

Now suppose that A = UΣV T and we want to find the closest orthogonal
matrix to A in the Frobenius norm. That is, we seek W with orthonormal
columns so as to minimize

∥A−W∥2F = ∥A∥2F − 2 tr(W TA) + ∥W∥2F

Note that ∥W∥2F =
√
n by the assumption that W has orthonormal columns,

so minimizing ∥A−W∥F is equivalent to maximizing (using the cyclic prop-
erty of traces)

tr(W TA) = tr(ΣV TW TU) = ⟨(WV )TU,Σ⟩F .

This is the same as the sum of the dot products of columns of WV T and
columns of U , weighted by Σ. These column dot products of unit vectors
have maximal value of 1, taken on when the two arguments are equal; that
is, we require WV = U or W = UV T = Q.

A closely related problem is the orthogonal Procrustes problem: for A,B inRm×n,
find the minimum of ∥A− BQ∥F where Q ∈ Rn×n is orthogonal. As before,
we note that

∥A− BQ∥2F = ∥A∥2F − 2 tr(ATBQ) + ∥BQ∥2F

and by orthogonal invariance, ∥BQ∥2F = ∥B∥2F is independent of Q. There-
fore, minimizing ∥A− BQ∥2F is equivalent to maximizing

tr(ATBQ) = ⟨BTA,Q⟩F .

Therefore, we need Q to be the polar factor of BTA with orthonormal
columns.
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