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1 Choice of regularization
All of the regularization methods we have discussed share a common trait:
they define a parametric family of models. With more regularization, we
restrict the range of models we can easily generate (adding bias), but we
also reduce the sensitivity of the fit (reducing variance). The choice of the
regularization parameter is a key aspect of these methods, and we now briefly
discuss three different ways of systematically making that choice. In all cases,
we rely on the assumption that the sample observations we use for the fit
are representative of the population of observations where we might want to
predict.

1.1 Morozov’s discrepancy principle
Suppose that we want to fit Ax ≈ b̂ by regularized least squares, and the
(noisy) observation vector b̂ is known to be within some error bound ∥e∥ of
the true values b. The discrepancy principle says that we should choose the
regularization parameter so the residual norm is approximately ∥e∥. That is,
we seek the most stable fitting problem we can get subject to the constraint
that the residual error for the regularized solution (with the noisy vector b̂)
is not much bigger than we would get from unknown true solution.

One of the most obvious drawbacks of the discrepancy principle is that
it requires that we have an estimate for the norm of the error in the data.
Sadly, such estimates are not always available.

1.2 The L-curve
A second approach to the regularization parameter is the L-curve. If we
draw a parametric curve of the residual error versus solution norm on a log-
log plot, with log ∥rλ∥ on the x axis and log ∥xλ∥ on the y axis, we often see
an “L” shape. In the top of the vertical bar (small λ), we find that increasing
regularization decreases the solution norm significantly without significantly
increasing the residual error. Along the end of the horizontal part, increasing
regularization increases the residual error, but does not significantly help with
the solution norm. We want the corner of the curve, where the regularization
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is chosen to minimize the norm of the solution subject to the constraint that
the residual is close to the smallest possible residual (which we would have
without regularization).

Computing the inflection point on the L-curve is a neat calculus exercise
which we will not attempt here.

1.3 Cross-validation
The idea with cross-validation is to choose the parameter by fitting the model
on a subset of the data and testing on the remaining data. We may do this
with multiple partitions into data used for fitting versus data reserved for
checking predictions. We often choose regularization parameters to give the
smallest error on the predictions in a cross-validation study.

One variant of cross-validation involves minimizing the leave-one-out cross-
validation (LOOCV) statistic:

LOOCV =
1

m

m∑
i=1

[
Ax(−i) − b

]2
i
,

where x(−i) denotes the model coefficients fit using all but the ith data point.
To compute the LOOCV statistic in the most obvious way, we would

delete each row aTi of A in turn, fit the model coefficients x(−i), and then
evaluate r(−i) = bi − aTi x

(−i). This involves m least squares problems, for a
total cost of O(m2n2) (as opposed to the usual O(mn2) cost for an ordinary
least squares problem). Let us find a better way! For the sake of concreteness,
we will focus on the Tikhonov-regularized version of the problem

The key is to write the equations for x(−i) as a small change to the equa-
tions for (ATA+ λ2I)x∗ = AT b:

(ATA+ λ2I − aia
T
i )x

(−i) = AT b− aibi.

This subtracts the influence of row i from both sides of the normal equations.
By introducing the auxiliary variable γ = −aTi x(−i), we have[

ATA+ λ2I ai
aTi 1

] [
x(−i)

γ

]
=

[
AT b− aibi

0

]
.

Eliminating x(−i) gives

(1− ℓ2i )γ = ℓ2i bi − aTi x
∗
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where ℓ2i = aTi (A
TA + λ2I)−1ai is called the leverage score for row i. Now,

observe that if r = b− Ax∗ is the residual for the full problem, then

(1− ℓ2i )r
(−i) = (1− ℓ2i )(bi + γ) = (1− ℓ2i )bi + ℓ2i bi − aTi x∗ = ri,

or, equivalently
r(−i) =

ri
1− ℓ2i

.

We finish the job by observing that ℓ2i is the ith diagonal element of the
orthogonal projector Π = A(ATA + λI)A−1, which we can also write in
terms of the economy QR decomposition[

A
λI

]
=

[
Q1

Q2

]
R

as Π = Q1Q
T
1 . Hence, ℓ2i is the squared row sum ofQ1 in the QR factorization.

2 Linearly constrained case
Consider the weighted least squares problem

minimize
m∑
i=1

wir
2
i

where w1 is much larger than the others. If we let w1 → ∞ while the others
are fixed, what happens? We essentially say that we care about enforcing the
first equation above all others, and in the limit we are solving the constrained
least squares problem

minimize
m∑
i=2

wir
2
i s.t. r1 = 0.

Unfortunately, if we actually try to compute this way, we are dancing on
dangerous ground; as w1 goes to infinity, so does the condition number of
the least squares problem. But this is only an issue with the weighted for-
mulation; we can formulate the constrained problem in other ways that are
perfectly well-behaved.
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In the remainder of this section, we address two ways of handling the
linearly constrained least squares problem

minimize ∥Ax− b∥2 s.t. CTx = d,

by either eliminating variables (the null-space method) or adding variables
(the method of Lagrange multipliers).

2.1 Null space method
In the null space method, we write an explicit expression for the solutions to
CTx = d in the form xp +Wz where xp is a particular solution to CTxp = d
and W is a basis for the null space of CT . Perhaps the simplest particular
solution is xp = (CT )†d, the solution with minimal norm; we can compute
both this particular solution and an orthogonormal null space basis quickly
using a full QR decomposition of C:

C =
[
Q1 Q2

] [R1

0

]
, xp = Q1R

−T
1 d, W = Q2.

Note that
CTxp = (RT

1Q
T
1 )x

p = d,

so this is indeed a particular solution. Having written an explicit parame-
terization for all solutions of the constraint equations, we can minimize the
least squares objective with respect to the reduced set of variables

minimize ∥A(xp +Wz)− b∥2 = ∥(AW )z − (b− Axp)∥2.

This new least squares problem involves a smaller set of variables (which is
good); but in general, even if A is sparse, AW will not be. So it is appropriate
to have a few more methods in our arsenal.

2.2 Lagrange multipliers
An alternate method is the method of Lagrange multipliers. This is an alge-
braic technique for adding equations to enforce constraints.

One way to approach the Lagrange multiplier method is to look at the
equations for a constrained minimum. In order not to have a downhill di-
rection, we require that the directional derivatives be zero in any direction
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consistent with the constraint; that is, we require Cx = d and

δxTAT r = 0 when CT δx = 0.

The constraint says that admissible δx are orthogonal to the columns of C;
the objective tells us the admissible δx should be orthogonal to the residual.
So we need that AT r should lie in the column span of C; that is,

AT r = −Cλ

for some λ, and Cx = d. Putting this together, we have the KKT equations[
ATA C
CT 0

] [
x
λ

]
=

[
AT b
d

]
.

These bordered normal equations are not the end point for constrained
least squares with Lagrange multipliers, any more than the normal equations
are the end point for unconstrained least squares. Rather, we can use this as
a starting point for clever manipulations involving our favorite factorizations
(QR and SVD) that reduce the bordered system to a more computationally
convenient form.

3 Quadratically constrained least squares
We end the lecture by commenting on the quadratically constrained least
squares problem

minimize 1

2
∥Ax− b∥2 s.t. ∥x∥2M ≤ ρ2

for some positive definite matrix M . Again applying the method of Lagrange
multipliers, we have that either ∥A†b∥2M ≤ ρ2 (i.e. the constraint is inactive)
or we seek a stationary point of

L(x, λ) = 1

2
∥Ax− b∥2 + λ

2
(xTMx− ρ2),

and taking variations with respect to x gives us

∇xL = AT (Ax− b) + λMx = (ATA+ λM)x− AT b = 0.

That is, if the constrained problem is active, we are actually solving a
Tikhonov-regularized least squares problem, with the Lagrange multiplier
serving the role of the regularization parameter.
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4 Iteratively reweighted least squares
We conclude with a brief example of how least squares can be used as a
building block for related functions. As an example, consider replacing the
least squares loss with an alternate loss function:

minimize
∑
i

ϕ(ri) s.t. r = Ax− b

where ϕ is a continuous symmetric function such that ϕ(0) = 0. A common
example is the Huber loss function

ϕδ(r) =

{
1
2
r2, |r| ≤ δ

δ
(
|r| − 1

2
δ
)
, otherwise.

Optimizing the Huber loss is much less sensitive to outliers than the least
squares loss. Other loss functions, such as the Tukey biweight, are even
less sensitive to outliers (but are nonconvex, and may lead to a non-unique
optimization problem).

How do we minimize the Huber loss? There are several options, but one of
the most popular is the iteratively reweighted least squares (IRLS) algorithm.
To derive the algorithm, we write the stationary conditions as

δrT (ψ(r)⊙ r) = 0

where ψ(ri) = ϕ′
δ(ri)/ri is a weight. In terms of x, we have δr = Aδx, and

so the stationary conditions are

δxTATW (r)(Ax− b) = 0

where W (r) is a diagonal matrix with entries Wii(r) = ψ(ri). That is, the
stationary conditions correspond to a set of normal equations for a weighted
least squares problem! Unfortunately, we don’t know what the weights are;
but we can guess them based on previous iterates. That is, we repeatedly
solve problems of the form

minimize ∥Ax(k+1) − b∥2W (r(k))

until convergence.
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