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1 Bias-variance tradeoffs in the matrix set-
ting

Least squares is often used to fit a model to be used for prediction in the
future. In learning theory, there is a notion of bias-variance decomposition
of the prediction error: the prediction error consists of a bias term due to
using a space of models that does not actually fit the data, and a term that
is related to variance in the model as a function of measurement noise on
the input. These are concepts that we can connect concretely to the type of
sensitivity analysis we have seen before, a task we turn to now.

Suppose A ∈ RM×n is a matrix of factors that we wish to use in predicting
the entries of b ∈ RM via the linear model

Ax ≈ b.

We partition A and b into the first m rows (where we have observations) and
the remaining M −m rows (where we wish to use the model for prediction):

A =

[
A1

A2

]
, b =

[
b1
be

]
If we could access all of b, we would compute x by the least square problem

Ax = b+ r, r ⊥ R(A).

In practice, we are given only A1 and b1 + e where e is a vector of random
errors, and we fit the model coefficients x̂ by solving

minimize ∥A1x̂− (b1 + e)∥2.

Our question, then: what is the least squared error in using x̂ for prediction,
and how does it compare to the best error possible? That is, what is the
relation between ∥Ax̂− b∥2 and ∥r∥2?

Note that
Ax̂− b = A(x̂− x) + r

and by the Pythagorean theorem and orthogonality of the residual,

∥Ax̂− b∥2 = ∥A(x̂− x)∥2 + ∥r∥2.
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The term ∥r̂∥2 is the (squared) bias term, the part of the error that is due
to lack of power in our model. The term ∥A(x̂ − x)∥2 is the variance term,
and is associated with sensitivity of the fitting process. If we dig further into
this, we can see that

x = A†
1(b1 + r1) x̂ = A†

1(b1 + e),

and so
∥A(x̂− x)∥2 = ∥AA†

1(e− r1)∥2

Taking norm bounds, we find

∥A(x̂− x)∥ ≤ ∥A∥∥A†
1∥(∥e∥+ ∥r1)∥),

and putting everything together,

∥Ax̂− b∥ ≤ (1 + ∥A∥∥A†
1∥)∥r∥+ ∥A∥∥A†

1∥∥e∥.

If there were no measurement error e, we would have a quasi-optimality
bound saying that the squared error in prediction via x̂ is within a factor of
1+ ∥A∥∥A†

1∥ of the best squared error available for any similar model. If we
scale the factor matrix A so that ∥A∥ is moderate in size, everything boils
down to ∥A†

1∥.
When ∥A†

1∥ is large, the problem of fitting to training data is ill-posed,
and the accuracy can be compromised. What can we do? As we discussed
in the last section, the problem with ill-posed problems is that they admit
many solutions of very similar quality. In order to distinguish between these
possible solutions to find a model with good predictive power, we consider
regularization: that is, we assume that the coefficient vector x is not too large
in norm, or that it is sparse. Different statistical assumptions give rise to
different regularization strategies; for the current discussion, we shall focus
on the computational properties of a few of the more common regularization
strategies without going into the details of the statistical assumptions. In
particular, we consider four strategies in turn

1. Factor selection via pivoted QR.

2. Tikhonov regularization and its solution.

3. Truncated SVD regularization.

4. ℓ1 regularization or the lasso.
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2 Factor selection and pivoted QR
In ill-conditioned problems, the columns of A are nearly linearly dependent;
we can effectively predict some columns as linear combinations of other
columns. The goal of the column pivoted QR algorithm is to find a set
of columns that are “as linearly independent as possible.” This is not such
a simple task, and so we settle for a greedy strategy: at each step, we select
the column that is least well predicted (in the sense of residual norm) by
columns already selected. This leads to the pivoted QR factorization

AΠ = QR

where Π is a permutation and the diagonal entries of R appear in descending
order (i.e. r11 ≥ r22 ≥ . . .). To decide on how many factors to keep in
the factorization, we either automatically take the first k or we dynamically
choose to take k factors where rkk is greater than some tolerance and rk+1,k+1

is not.
The pivoted QR approach has a few advantages. It yields parsimonious

models that predict from a subset of the columns of A – that is, we need to
measure fewer than n factors to produce an entry of b in a new column. It
can also be computed relatively cheaply, even for large matrices that may be
sparse. However, pivoted QR is not the only approach! A related approach
due to Golub, Klema, and Stewart computes A = UΣV T and chooses a subset
of the factors based on pivoted QR of V T . More generally, approaches such
as the lasso yield an automatic factor selection.

3 Tikhonov regularization (ridge regression)
Another approach is to say that we want a model in which the coefficients
are not too large. To accomplish this, we add a penalty term to the usual
least squares problem:

minimize ∥Ax− b∥2 + λ2∥x∥2.

Equivalently, we can write

minimize
∥∥∥∥[AλI

]
x−

[
b
0

]∥∥∥∥2

,
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which leads to the regularized version of the normal equations

(ATA+ λ2I)x = AT b.

In some cases, we may want to regularize with a more general norm ∥x∥2M =
xTMx where M is symmetric and positive definite, which leads to the regu-
larized equations

(ATA+ λ2M)x = AT b.

If we want to incorporate prior information that pushes x toward some initial
guess x0, we may pose the least squares problem in terms of z = x−x0 and use
some form of Tikhonov regularization. If we know of no particular problem
structure in advance, the standard choice of M = I is a good default.

It is useful to compare the usual least squares solution to the regularized
solution via the SVD. If A = UΣV T is the economy SVD, then

xLS = V Σ−1UT b

xT ik = V f(Σ)−1UT b

where
f(σ) =

1√
σ−1 + λ2

.

This filter of the inverse singular values affects the larger singular values only
slightly, but damps the effect of very small singular values.

4 Truncated SVD
The Tikhonov filter reduces the effect of small singular values on the solu-
tion, but it does not eliminate that effect. By contrast, the truncated SVD
approach uses the filter

f(z) =

{
z, z > σmin

∞, otherwise.

In other words, in the truncated SVD approach, we use

x = VkΣ
−1
k UT

k b

where Uk and Vk represent the leading k columns of U and V , respectively,
while Σk is the diagonal matrix consisting of the k largest singular values.
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5 ℓ1 and the lasso
An alternative to Tikhonov regularization (based on a Euclidean norm of the
coefficient vector) is an ℓ1 regularized problem

minimize ∥Ax− b∥2 + λ∥x∥1.

This is sometimes known as the “lasso” approach. The ℓ1 regularized problem
has the property that the solutions tend to become sparse as λ becomes
larger. That is, the ℓ1 regularization effectively imposes a factor selection
process like that we saw in the pivoted QR approach. Unlike the pivoted
QR approach, however, the ℓ1 regularized solution cannot be computed by
one of the standard factorizations of numerical linear algebra. Instead, one
treats it as a more general convex optimization problem. We will discuss
some approaches to the solution of such problems later in the semester.

6 Regularization via iteration
We have briefly talked about one iterative method already (iterative refine-
ment), and will talk about other iterative methods later in the semester.
Some of these iterations have a regularizing effect when they are truncated
early. In fact, there is an argument that slowly convergent methods may be
beneficial in some cases!

As an example, consider the Landweber iteration, which is gradient de-
scent applied to linear least squares problems:

xk+1 = xk − αkA
T (Axk − b).

If we start from the initial guess x0 = 0 and let the step size be a fixed
αk = α, each subsequent step is a partial sum of a Neumann series

xk+1 =
k∑

j=0

(I − αATA)jαAT b

=
(
I − (I − αATA)k+1

)
(αATA)−1αAT b

=
(
I − (I − αATA)k+1

)
A†b.

Alternately, we can write the iterates in terms of the singular value decom-
position with a filter for regularization:

xk+1 = V Σ̃−1UT b, σ̃−1
j = (1− (1− ασ2

j )
k+1)σ−1

j .
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Usually, the Landweber iteration is stopped when k is large enough so that
the filter is nearly the identity for large singular values, but is small enough
to suppress the influence of small singular values.

The Landweber iteration is not alone in having a regularizing effect, but
it is easier to analyze than some of the more sophisticated Krylov-based
methods that we will describe later in the semester.

7 Tradeoffs and tactics
All four of the regularization approaches we have described are used in prac-
tice, and each has something to recommend it. The pivoted QR approach is
relatively inexpensive, and it results in a model that depends on only a few
factors. If taking the measurements to compute a prediction costs money
— or even costs storage or bandwidth for the factor data! — such a model
may be to our advantage. The Tikhonov approach is likewise inexpensive,
and has a nice Bayesian interpretation (though we didn’t talk about it). The
truncated SVD approach involves the best approximation rank k approxi-
mation to the original factor matrix, and can be interpreted as finding the k
best factors that are linear combinations of the original measurements. The
ℓ1 approach again produces models with sparse coefficients; but unlike QR
with column pivoting, the ℓ1 regularized solutions incorporate information
about the vector b along with the matrix A.

So which regularization approach should one use? In terms of prediction
quality, all can provide a reasonable deterrent against ill-posedness and over-
fitting due to highly correlated factors. Also, all of the methods described
have a parameter (the number of retained factors, or a penalty parameter
λ) that governs the tradeoff between how well-conditioned the fitting prob-
lem will be and the increase in bias that naturally comes from looking at a
smaller class of models. Choosing this tradeoff intelligently may be rather
more important than the specific choice of regularization strategy. A detailed
discussion of how to make this tradeoff is beyond the scope of the class; but
we will see some of the computational tricks involved in implementing specific
strategies for choosing regularization parameters before we are done.
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8 Choice of regularization
All of the regularization methods we have discussed share a common trait:
they define a parametric family of models. With more regularization, we
restrict the range of models we can easily generate (adding bias), but we
also reduce the sensitivity of the fit (reducing variance). The choice of the
regularization parameter is a key aspect of these methods, and we now briefly
discuss three different ways of systematically making that choice. In all cases,
we rely on the assumption that the sample observations we use for the fit
are representative of the population of observations where we might want to
predict.

8.1 Morozov’s discrepancy principle
Suppose that we want to fit Ax ≈ b̂ by regularized least squares, and the
(noisy) observation vector b̂ is known to be within some error bound ∥e∥ of
the true values b. The discrepancy principle says that we should choose the
regularization parameter so the residual norm is approximately ∥e∥. That is,
we seek the most stable fitting problem we can get subject to the constraint
that the residual error for the regularized solution (with the noisy vector b̂)
is not much bigger than we would get from unknown true solution.

One of the most obvious drawbacks of the discrepancy principle is that
it requires that we have an estimate for the norm of the error in the data.
Sadly, such estimates are not always available.

8.2 The L-curve
A second approach to the regularization parameter is the L-curve. If we
draw a parametric curve of the residual error versus solution norm on a log-
log plot, with log ∥rλ∥ on the x axis and log ∥xλ∥ on the y axis, we often see
an “L” shape. In the top of the vertical bar (small λ), we find that increasing
regularization decreases the solution norm significantly without significantly
increasing the residual error. Along the end of the horizontal part, increasing
regularization increases the residual error, but does not significantly help with
the solution norm. We want the corner of the curve, where the regularization
is chosen to minimize the norm of the solution subject to the constraint that
the residual is close to the smallest possible residual (which we would have
without regularization).
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Computing the inflection point on the L-curve is a neat calculus exercise
which we will not attempt here.

8.3 Cross-validation
The idea with cross-validation is to choose the parameter by fitting the model
on a subset of the data and testing on the remaining data. We may do this
with multiple partitions into data used for fitting versus data reserved for
checking predictions. We often choose regularization parameters to give the
smallest error on the predictions in a cross-validation study.

One variant of cross-validation involves minimizing the leave-one-out cross-
validation (LOOCV) statistic:

LOOCV =
1

m

m∑
i=1

[
Ax(−i) − b

]2
i
,

where x(−i) denotes the model coefficients fit using all but the ith data point.
To compute the LOOCV statistic in the most obvious way, we would

delete each row aTi of A in turn, fit the model coefficients x(−i), and then
evaluate r(−i) = bi − aTi x

(−i). This involves m least squares problems, for a
total cost of O(m2n2) (as opposed to the usual O(mn2) cost for an ordinary
least squares problem). Let us find a better way! For the sake of concreteness,
we will focus on the Tikhonov-regularized version of the problem

The key is to write the equations for x(−i) as a small change to the equa-
tions for (ATA+ λ2I)x∗ = AT b:

(ATA+ λ2I − aia
T
i )x

(−i) = AT b− aibi.

This subtracts the influence of row i from both sides of the normal equations.
By introducing the auxiliary variable γ = −aTi x

(−i), we have[
ATA+ λ2I ai

aTi 1

] [
x(−i)

γ

]
=

[
AT b− aibi

0

]
.

Eliminating x(−i) gives

(1− ℓ2i )γ = ℓ2i bi − aTi x
∗

where ℓ2i = aTi (A
TA + λ2I)−1ai is called the leverage score for row i. Now,

observe that if r = b− Ax∗ is the residual for the full problem, then

(1− ℓ2i )r
(−i) = (1− ℓ2i )(bi + γ) = (1− ℓ2i )bi + ℓ2i bi − aTi x∗ = ri,
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or, equivalently
r(−i) =

ri
1− ℓ2i

.

We finish the job by observing that ℓ2i is the ith diagonal element of the
orthogonal projector Π = A(ATA + λI)A−1, which we can also write in
terms of the economy QR decomposition[

A
λI

]
=

[
Q1

Q2

]
R

as Π = Q1Q
T
1 . Hence, ℓ2i is the squared row sum of Q1 in the QR factorization.
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