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1 Trouble points
At a high level, there are two pieces to solving a least squares problem:

1. Project b onto the span of A.

2. Solve a linear system so that Ax equals the projected b.

Consequently, there are two ways we can get into trouble in solving least
squares problems: either b may be nearly orthogonal to the span of A, or the
linear system might be ill conditioned.

1.1 Perpendicular problems
Let’s first consider the issue of b nearly orthogonal to the range of A first.
Suppose we have the trivial problem

A =

[
1
0

]
, b =

[
ϵ
1

]
.

The solution to this problem is x = ϵ; but the solution for

A =

[
1
0

]
, b̂ =

[
−ϵ
1

]
.

is x̂ = −ϵ. Note that ∥b̂− b∥/∥b∥ ≈ 2ϵ is small, but |x̂− x|/|x| = 2 is huge.
That is because the projection of b onto the span of A (i.e. the first component
of b) is much smaller than b itself; so an error in b that is small relative to
the overall size may not be small relative to the size of the projection onto
the columns of A.

Of course, the case when b is nearly orthogonal to A often corresponds to
a rather silly regressions, like trying to fit a straight line to data distributed
uniformly around a circle, or trying to find a meaningful signal when the
signal to noise ratio is tiny. This is something to be aware of and to watch
out for, but it isn’t exactly subtle: if ∥r∥/∥b∥ is near one, we have a numerical
problem, but we also probably don’t have a very good model.
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1.2 Conditioning of least squares
A more subtle problem occurs when some columns of A are nearly linearly
dependent (i.e. A is ill-conditioned). The condition number of A for least
squares is

κ(A) = ∥A∥∥A†∥ = σ1/σn.

If κ(A) is large, that means:
1. Small relative changes to A can cause large changes to the span of A

(i.e. there are some vectors in the span of Â that form a large angle
with all the vectors in the span of A).

2. The linear system to find x in terms of the projection onto A will be
ill-conditioned.

If θ is the angle between b and the range of A, then the sensitivity to per-
turbations in b is

∥δx∥
∥x∥

≤ κ(A)

cos(θ)

∥δb∥
∥b∥

while the sensitivity to perturbations in A is
∥δx∥
∥x∥

≤
(
κ(A)2 tan(θ) + κ(A)

) ∥δA∥
∥A∥

.

The first term (involving κ(A)2) is associated with the tendency of changes
in A to change the span of A; the second term comes from solving the linear
system restricted to the span of the original A. Even if the residual is moder-
ate, the sensitivity of the least squares problem to perturbations in A (either
due to roundoff or due to measurement error) can quickly be dominated by
κ(A)2 tan(θ) if κ(A) is at all large.

In regression problems, the columns of A correspond to explanatory fac-
tors. For example, we might try to use height, weight, and age to explain the
probability of some disease. In this setting, ill-conditioning happens when
the explanatory factors are correlated — for example, weight might be well
predicted by height and age in our sample population. This happens reason-
ably often. When there is a lot of correlation, we have an ill-posed problem.

2 Sensitivity details
Having given a road-map of the main sensitivity result for least squares, we
now go through some more details.
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2.1 Preliminaries
Before continuing, it is worth highlighting a few facts about norms of matrices
that appear in least squares problems.

1. In the ordinary two-norm, ∥A∥ = ∥AT∥.

2. If Q ∈ Rm×n satisfies QTQ = I, then ∥Qz∥ = ∥z∥. We know also that
∥QT z∥ ≤ ∥z∥, but equality will not hold in general.

3. Consequently, if Π = QQT , then ∥P∥ ≤ 1. Equality actually holds
unless Q is square (so that Π = 0).

4. If A = QR = UΣV T are economy decompositions, then ∥A∥ = ∥R∥ =
σ1(A) and ∥A†∥ = ∥R−1∥ = 1/σn(A).

2.2 Warm-up: y = AT b

Before describing the sensitivity of least squares, we address the simpler
problem of sensitivity of matrix-vector multiply. As when we dealt with
square matrices, the first-order sensitivity formula looks like

δy = δAT b+ AT δb

and taking norms gives us a first-order bound on absolute error

∥δy∥ ≤ ∥δA∥∥b∥+ ∥A∥∥δb∥.

Now we divide by ∥y∥ = ∥AT b∥ to get relative errors

∥δy∥
∥y∥

≤ ∥A∥∥b∥
∥AT b∥

(
∥δA∥
∥A∥

+
∥δb∥
∥b∥

)
.

If A were square, we could control the multiplier in this relative error expres-
sion by ∥A∥∥A−1∥. But in the rectangular case, A does not have an inverse.
We can, however, use the SVD to write

∥A∥∥b∥
∥AT b∥

≥ σ1(A)∥b∥
σn(A)∥UT b∥

= κ(A)
∥b∥

∥UT b∥
= κ(A) sec(θ)

where θ ∈ [0, π/2] is the acute angle between b and the range space of A (or,
equivalently, of U).
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2.3 Sensitivity of the least squares solution
We now take variations of the normal equations AT r = 0:

δAT r + AT (δb− δAx− Aδx) = 0.

Rearranging terms slightly, we have

δx = (ATA)−1δAT r + A†(δb− δAx).

Taking norms, we have

∥δx∥ ≤ ∥δA∥∥r∥
σn(A)2

+
∥δb∥+ ∥δA∥∥x∥

σn(A)
.

We now note that because Ax is in the span of A,

∥x∥ = ∥A†Ax∥ ≥ ∥Ax∥/σ1(A)

and so if θ is the angle between b and R(A),

∥b∥
∥x∥

≤ σ1(A)
∥b∥
∥Ax∥

= σ1(A) sec(θ)

∥r∥
∥x∥

≤ σ1(A)
∥r∥
∥Ax∥

= σ1(A) tan(θ).

Therefore, we have

∥δx∥
∥x∥

≤ κ(A)2
∥δA∥
∥A∥

tan(θ) + κ(A)
∥δb∥
∥b∥

sec(θ) + κ(A)
∥δA∥
∥A∥

.

which we regroup as

∥δx∥
∥x∥

≤
(
κ(A)2 tan(θ) + κ(A)

) ∥δA∥
∥A∥

+ κ(A) sec(θ)
∥δb∥
∥b∥

.

2.4 Residuals and rotations
Sometimes we care not about the sensitivity of x, but of the residual r. It is
left as an exercise to show that

∥∆r∥
∥b∥

≤ ∥∆b∥
∥b∥

+ ∥∆Π∥
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where we have used capital deltas to emphasize that this is not a first-order
result: ∆b is a (possibly large) perturbation to the right hand side and ∆Π =
Π̂−Π is the difference in the orthogonal projectors onto the spans of Â and
A. This is slightly awkward, though, as we would like to be able to relate
the changes to the projector to changes to the matrix A. We can show1 that
∥∆Π∥ ≤

√
2∥E∥ where E = (I − QQT )Q̂. To finish the job, though, we

will need the perturbation theory for the QR decomposition (though we will
revert to first-order analysis in so doing).

Let A = QR be an economy QR decomposition, and let Q⊥ be an or-
thonormal basis for the orthogonal complement of the range of Q. Taking
variations, we have the first-order expression:

δA = δQR +QδR.

Pre-multiplying by QT
⊥ and post-multiplying by R−1, we have

QT
⊥(δA)R

−1 = QT
⊥δQ.

Here QT
⊥δQ represents the part of δQ that lies outside the range space of Q.

That is,

(I −QQT )(Q+ δQ) = Q⊥Q
T
⊥δQ = Q⊥Q

T
⊥(δA)R

−1.

Using the fact that the norm of the projector is bounded by one, we have

∥(I −QQT )δQ∥ ≤ ∥δA∥∥R−1∥ = ∥δA∥/σn(A).

Therefore,
∥δΠ∥ ≤

√
2κ(A)

∥δA∥
∥A∥

and so
∥δr∥
∥b∥

≤ ∥δb∥
∥b∥

+
√
2κ(A)

∥δA∥
∥A∥

.

From our analysis, though, we have seen that the only part of the perturba-
tion to A that matters is the part that changes the range of A.

1Demmel’s book goes through this argument, but ends up with a factor of 2 where we
have a factor of

√
2; the modest improvement of the constant comes from the observation

that if X,Y ∈ Rm×n satisfy XTY = 0, then ∥X+Y ∥2 ≤ ∥X∥2+∥Y ∥2 via the Pythagorean
theorem.
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3 A cautionary tale
We have seen in our discussion of linear systems that sensitivity analysis
plays a key role in understanding the effect of perturbations (whether due
to roundoff or measurement error) on our computed solutions. In the case
of least squares problems, understanding sensitivity is more complex, but it
is – if anything – even more critical than in the linear systems case. Conse-
quently, this is the setting in which most students of matrix computations
are really faced head-on with the practical difficulties of ill-conditioning and
the necessity of regularization.

To set the stage for our discussion of regularization, we consider a silly
story that demonstrates a real problem. Suppose you have been dropped on
a desert island with a laptop with a magic battery of infinite life, a MATLAB
license, and a complete lack of knowledge of basic geometry. In particular,
while you know about least squares fitting, you have forgotten how to com-
pute the perimeter of a square. You vaguely feel that it ought to be related
to the perimeter or side length, though, so you set up the following model:

perimeter = α · side length + β · diagonal.

After measuring several squares, you set up a least squares system Ax = b;
with your real eyes, you know that this must look like

A =
[
s

√
2s
]
, b = 4s

where s is a vector of side lengths. The normal equations are therefore

ATA = ∥s∥2
[
1

√
2√

2 2

]
, AT b = ∥s∥2

[
4

4
√
2

]
.

This system does have a solution; the problem is that it has far more than
one. The equations are singular, but consistent. We have no data that would
lead us to prefer to write p = 4s or p = 2

√
2d or something in between. The

fitting problem is ill-posed.
We deliberately started with an extreme case, but some ill-posedness is

common in least squares problems. As a more natural example, suppose that
we measure the height, waist girth, chest girth, and weight of a large number
of people, and try to use these factors to predict some other factor such as
proclivity to heart disease. Naive linear regression – or any other naively
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applied statistical estimation technique – is likely to run into trouble, as the
height, weight, and girth measurements are highly correlated. It is not that
we cannot fit a good linear model; rather, we have too many models that
are each almost as good as the others at fitting the data! We need a way to
choose between these models, and this is the point of regularization.
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