
Bindel, Fall 2022 Matrix Computations

2022-09-22

1 A family of factorizations
1.1 Cholesky
If A ∈ Rm×n with m > n is full rank, then ATA is symmetric and positive
definite matrix, and we can compute a Cholesky factorization of ATA:

ATA = RTR.

The solution to the least squares problem is then

x = (ATA)−1AT b = R−1R−TAT b.

Or, in Julia world
1 F = chol(A'*A);
2 x = F\(A'*b);

1.2 Economy QR
The Cholesky factor R appears in a different setting as well. Let us write
A = QR where Q = AR−1; then

QTQ = R−TATAR−1 = R−TRTRR−1 = I.

That is, Q is a matrix with orthonormal columns. This “economy QR factor-
ization” can be computed in several different ways, including one that you
have seen before in a different guise (the Gram-Schmidt process).

Julia provides a numerically stable method to compute the QR factoriza-
tion via

1 F = qr(A)

and we can use the QR factorization directly to solve the least squares prob-
lem without forming ATA by

1 F = qr(A)
2 x = F\b

Behind the scenes, this is what is used when we write A\b with a dense
rectangular matrix A.



Bindel, Fall 2022 Matrix Computations

1.3 Full QR
There is an alternate “full” QR decomposition where we write

A = QR, where Q =
[
Q1 Q2

]
∈ Rn×n, R =

[
R1

0

]
∈ Rm×n.

To see how this connects to the least squares problem, recall that the Eu-
clidean norm is invariant under orthogonal transformations, so

∥r∥2 = ∥QT r∥2 =
∥∥∥∥[QT

1 b
QT

2 b

]
−

[
R1

0

]
x

∥∥∥∥2

= ∥QT
1 b−R1x∥2 + ∥QT

2 b∥2.

We can set ∥QT
1 v − R1x∥2 to zero by setting x = R−1

1 QT
1 b; the result is

∥r∥2 = ∥QT
2 b∥2.

The QR factorization routine in Julia can be used to reconstruct either
the full or the compact QR decomposition. Internally, it stores neither the
smaller Q1 nor the full matrix Q explicitly; rather, it uses a compact rep-
resentation of the matrix as a product of Householder reflectors, as we will
discuss next time.

1.4 SVD
The full QR decomposition is useful because orthogonal transformations do
not change lengths. Hence, the QR factorization lets us change to a coordi-
nate system where the problem is simple without changing the problem in
any fundamental way. The same is true of the SVD, which we write as

A =
[
U1 U2

] [Σ
0

]
V T Full SVD

= U1ΣV
T Economy SVD.

As with the QR factorization, we can apply an orthogonal transformation
involving the factor U that makes the least squares residual norm simple:

∥UT r∥2 =
∥∥∥∥[UT

1 b
UT
2 b

]
−

[
ΣV T

0

]
x

∥∥∥∥ = ∥UT
1 b− ΣV Tx∥2 + ∥UT

2 b∥2,

and we can minimize by setting x = V Σ−1UT
1 b.



Bindel, Fall 2022 Matrix Computations

2 QR and Gram-Schmidt
We now turn to our first numerical method for computing the QR decom-
position: the Gram-Schmidt algorithm. This method is usually presented in
first linear algebra classes, but is rarely interpreted as a matrix factorization.
Rather, it is presented as a way of converting a basis for a space into an
orthonormal basis for the same space. If a1, a2, . . . , an are column vectors,
the Gram-Schmidt algorithm is as follows: for each j = 1, . . . , n

ãj = aj −
j−1∑
i=1

qiq
T
i aj

qj = ãj/∥ã∥j.

At the end of the iteration, we have that the qj vectors are all mutually
orthonormal and

span{a1, . . . , aj} = span{q1, . . . , qj}.

To see this as a matrix factorization, we rewrite the iteration as

rij = qTi aj

ãj = aj −
j−1∑
i=1

qirij

rjj = ∥ã∥j
qj = ãj/rjj

Putting these equations together, we have that

aj =

j∑
i=1

qirij,

or, in matrix form,
A = QR

where A and Q are the matrices with column vectors aj and qj, respectively.
In Julia, Gram-Schmidt looks something like this:



Bindel, Fall 2022 Matrix Computations

1 function orth_cgs0(A)
2 m,n = size(A)
3 Q = zeros(m,n)
4 for j = 1:n
5 v = A[:,j] # Take the jth original basis vector
6 v = v-Q[:,1:j-1]*(Q[:,1:j-1]'*v) # Orthogonalize vs q_1, ... q_j-1
7 v = v/norm(v) # Normalize what remains
8 Q[:,j] = v # Add result to Q basis
9 end

10 Q
11 end

Where does R appear in this algorithm? It appears thus:
1 function orth_cgs(A)
2 m,n = size(A)
3 Q = zeros(m,n)
4 R = zeros(n,n)
5 for j = 1:n
6 v = A[:,j] # Take the jth original basis vector
7 R[1:j-1,j] = Q[:,1:j-1]'*v # Project onto q_1, ..., q_j-1
8 v = v-Q[:,1:j-1]*R[1:j-1,j] # Orthogonalize vs q_1, ... q_j-1
9 R[j,j] = norm(v) # Compute normalization constant

10 v = v/R[j,j] # Normalize what remains
11 Q[:,j] = v # Add result to Q basis
12 end
13 Q, R
14 end

That is, R accumulates the multipliers that we computed from the Gram-
Schmidt procedure. This idea that the multipliers in an algorithm can be
thought of as entries in a matrix should be familiar, since we encountered it
before when we looked at Gaussian elimination.

Sadly, the Gram-Schmidt algorithm is not backward stable. The problem
occurs when a vector aj is nearly in the span of previous vectors, so that
cancellation rears its ugly head in the formation of ãj. As a result, we have
that A+E = Q̂R̂ is usually satisfied with a relatively small E, but ∥Q̂T Q̂−I∥
may not be small (in the worst case, the computed Q̂ may even be near
singular). The classical Gram-Schmidt (CGS) method that we have shown
is particularly problematic; a somewhat better alternative is the modified
Gram-Schmidt method (MGS) algorithm:

1 function orth_mgs(A)
2 m,n = size(A)
3 Q = zeros(m,n)



Bindel, Fall 2022 Matrix Computations

4 R = zeros(n,n)
5 for j = 1:n
6 v = A[:,j] # Take the jth original basis vector
7 for k = 1:j-1
8 R[k,j] = Q[:,j]'*v # Project onto q_1, ..., q_j-1
9 v -= Q[:,j]*R[k,j] # Orthogonalize vs q_1, ... q_j-1

10 end
11 R[j,j] = norm(v) # Compute normalization constant
12 v = v/R[j,j] # Normalize what remains
13 Q[:,j] = v # Add result to Q basis
14 end
15 Q, R
16 end

Though equivalent in exact arithmetic, the MGS algorithm has the advan-
tage that it computes dot products with the updated ãj as we go along,
and these intermediate vectors have smaller norm than the original vector.
Sadly, this does not completely fix the matter: the computed qj vectors
can still drift away from being orthogonal to each other. One can explicitly
re-orthogonalize vectors that drift away from orthogonality, and this helps
further. In practice, though, we usually don’t bother: if backward stability
is required, we turn to other algorithms.

Despite its backward instability, the Gram-Schmidt algorithm forms a
very useful building block for iterative methods, and we will see it frequently
in later parts of the course.

3 Householder transformations
The Gram-Schmidt orthogonalization procedure is not generally recommended
for numerical use. Suppose we write A = [a1 . . . am] and Q = [q1 . . . qm]. The
essential problem is that if rjj ≪ ∥aj∥2, then cancellation can destroy the
accuracy of the computed qj; and in particular, the computed qj may not
be particularly orthogonal to the previous qj. Actually, loss of orthogonality
can build up even if the diagonal elements of R are not exceptionally small.
This is Not Good, and while we have some tricks to mitigate the problem,
we need a different approach if we want the problem to go away.

Recall that one way of expressing the Gaussian elimination algorithm is
in terms of Gauss transformations that serve to introduce zeros into the lower
triangle of a matrix. Householder transformations are orthogonal transfor-
mations (reflections) that can be used to similar effect. Reflection across the



Bindel, Fall 2022 Matrix Computations

x− ∥x∥y
x

∥x∥y

Figure 1: Construction of a reflector to transform x into ∥x∥y, ∥y∥ = 1.

plane orthogonal to a unit normal vector v can be expressed in matrix form
as

H = I − 2vvT .

Now suppose we are given a vector x and we want to find a reflection
that transforms x into a direction parallel to some unit vector y. The right
reflection is through a hyperplane that bisects the angle between x and y
(see Figure 1), which we can construct by taking the hyperplane normal to
x− ∥x∥y. That is, letting u = x− ∥x∥y and v = u/∥u∥, we have

(I − 2vvT )x = x− 2
(x+ ∥x∥y)(xTx+ ∥x∥xTy)

∥x∥2 + 2xTy∥x∥+ ∥x∥2∥y∥2

= x− (x− ∥x∥y)
= ∥x∥y.

If we use y = ±e1, we can get a reflection that zeros out all but the first
element of the vector x. So with appropriate choices of reflections, we can
take a matrix A and zero out all of the subdiagonal elements of the first
column.

Now think about applying a sequence of Householder transformations to
introduce subdiagonal zeros into A, just as we used a sequence of Gauss
transformations to introduce subdiagonal zeros in Gaussian elimination. As
with LU factorization, we can re-use the storage of A by recognizing that
the number of nontrivial parameters in the vector w at each step is the same
as the number of zeros produced by that transformation. This gives us the
following:



Bindel, Fall 2022 Matrix Computations

1 function hqr!(A)
2 m,n = size(A)
3 tau = zeros(n)
4

5 for j = 1:n
6

7 # Find H = I-tau*w*w' to zero out A[j+1:end,j]
8 normx = norm(A[j:end,j])
9 s = -sign(A[j,j])

10 u1 = A[j,j] - s*normx
11 w = A[j:end,j]/u1
12 w[1] = 1.0
13 A[j+1:end,j] = w[2:end] # Save trailing part of w
14 A[j,j] = s*normx # Diagonal element of R
15 tau[j] = -s*u1/normx # Save scaling factor
16

17 # Update trailing submatrix by multipling by H
18 A[j:end,j+1:end] -= tau[j]*w*(w'*A[j:end,j+1:end])
19

20 end
21

22 A, tau
23 end

If we ever need Q or QT explicitly, we can always form it from the com-
pressed representation. We can also multiply by Q and QT implicitly:

1 function applyQ!(QR, �, X)
2 m, n = size(QR)
3 for j = n:-1:1
4 w = [1.0; QR[j+1:end,j]]
5 X[j:end,:] -= tau[j]*w*(w'*X[j:end,:])
6 end
7 X
8 end
9

10 function applyQT!(QR, �, X)
11 m, n = size(QR)
12 for j = 1:n
13 w = [1.0; QR[j+1:end,j]]
14 X[j:end,:] -= tau[j]*w*(w'*X[j:end,:])
15 end
16 X
17 end
18

19 applyQ(QR, tau, X) = applyQ!(QR, tau, copy(X))



Bindel, Fall 2022 Matrix Computations

20 applyQT(QR, tau, X) = applyQ(QR, tau, copy(X))

4 Block reflectors
As with Gaussian elimination, we would prefer to have a block implemen-
tation of the algorithm available in order to get better use of level 3 BLAS
routines. To do this, we seek a representation for a block reflector. Three
such representations are common in the literature:

• The block reflector (or GGT ) representation: H = I − 2UUT

• The WY T representation: H = I+WY T where W and Y are computed
via a recurrence relation

• The compact WY T representation: H = I + Y TY T where T is upper
triangular

The LAPACK routine DGEQRT uses the compact WY T representation, as do
most variants of the qr routine in Julia.

5 Givens rotations
Householder reflections are one of the standard orthogonal transformations
used in numerical linear algebra. The other standard orthogonal transforma-
tion is a Givens rotation:

G =

[
c −s
s c

]
.

where c2 + s2 = 1. Note that

G =

[
c −s
s c

] [
x
y

]
=

[
cx− sy
sx+ cy

]
so if we choose

s =
−y√
x2 + y2

, c =
x√

x2 + y2

then the Givens rotation introduces a zero in the second column. More
generally, we can transform a vector in Rm into a vector parallel to e1 by



Bindel, Fall 2022 Matrix Computations

a sequence of m − 1 Givens rotations, where the first rotation moves the
last element to zero, the second rotation moves the second-to-last element to
zero, and so forth.

For some applications, introducing zeros one by one is very attractive.
In some places, you may see this phrased as a contrast between algorithms
based on Householder reflections and those based on Givens rotations, but
this is not quite right. Small Householder reflections can be used to introduce
one zero at a time, too. Still, in the general usage, Givens rotations seem to
be the more popular choice for this sort of local introduction of zeros.

6 Stability of QR
It is not too difficult to show that applying a Givens rotations or Householder
reflector to a matrix is backward-stable: if P is the desired transformation,
the floating point result of PA is

P̃A = (P + E)A, ∥E∥ ≤ O(ϵmach)∥A∥.

Moreover, orthogonal matrices are perfectly conditioned! Taking a prod-
uct of j matrices is also fine; the result has backward error bounded by
jO(ϵmach)∥A∥. As a consequence, QR decomposition by Givens rotations or
Householder transformations is ultimately backward stable.

The stability of orthogonal matrices in general makes them a marvelous
building block for numerical linear algebra algorithms, and we will take ad-
vantage of this again when we discuss eigenvalue solvers.

7 Sparse QR
Just as was the case with LU, the QR decomposition admits a sparse variant.
And, as with LU, sparsity of the matrix A ∈ Rm×n alone is not enough
to guarantee sparsity of the factorization! Hence, as with solving linear
systems, our recommendation for solving sparse least squares problems varies
depending on the actual sparse structure.

Recall that the R matrix in QR factorization is also the Cholesky factor
of the Gram matrix: G = ATA = RTR. Hence, the sparsity of the R factor
can be inferred from the sparsity of G using the ideas we talked about when
discussing sparse Cholesky. If the rows of A correspond to experiments and



Bindel, Fall 2022 Matrix Computations

columns correspond to factors, the nonzero structure of G is determined by
which experiments share common factors: in general gij ̸= 0 if any experi-
ment involves both factors i and factor j. So a very sparse A matrix may
nonetheless yield a completely dense G matrix. Of course, if R is dense, that
is not the end of the world! Factoring a dense n × n matrix is pretty cheap
for n in the hundreds or even up to a couple thousand, and solves with the
resulting triangular factors are quite inexpensive.

If one forms Q at all, it is often better to work with Q as a product of
(sparse) Householder reflectors rather than forming the elements of Q. One
may also choose to use a “Q-less QR decomposition” in which the matrix Q
is not kept in any explicit form; to form QT b in this case, we would use the
formulation QT b = R−TAT b.

As with linear solves, least squares solves can be “cleaned up” using
iterative refinement. This is a good idea in particular when using Q-less
QR. If Ã† is an approximate least squares solve (e.g. via the slightly-unstable
normal equations approach), iterative refinement looks like

rk = b− Axk

xk+1 = xk − R̃−1(R̃−T (AT rk)).

This approach can be useful even when A is moderately large and dense;
for example, R̃ might be computed from a (scaled) QR decomposition of a
carefully selected subset of the rows of A.


	A family of factorizations
	Cholesky
	Economy QR
	Full QR
	SVD

	QR and Gram-Schmidt
	Householder transformations
	Block reflectors
	Givens rotations
	Stability of QR
	Sparse QR

