
Bindel, Fall 2022 Matrix Computations

2022-09-15

1 Band and skyline solvers
In this lecture, we will consider various types of sparse direct factorization
methods. We’ll focus throughout on Cholesky, simply to avoid the awkward-
ness associated with pivoting. We begin with the case of band matrices.

The bandwidth b of a matrix is the smallest non-negative integer b such
that aij = 0 for |i − j| > b. Hence, diagonal matrices have bandwidth 1,
bidiagonal and tridiagonal matrices have bandwidth 2, and so forth. In the
nonsymmetric case, we may distinguish between the upper and the lower
bandwidth.

For symmetric positive definite matrices of bandwidth b, the Cholesky
factors also have bandwidth b. To see why, consider one step of Cholesky
factorization for a pentadiagonal matrix (bandwidth b = 2):

A =

× × ×
× × × ×
× × × × ×

× × × × ×
× × × × ×

.
× × × × ×

× × × ×
× × ×

The first step of Cholesky factorization takes the square root of the (1, 1)
element, scales the first row, and (conceptually) zeros out the subdiagonal
entries of the first column. If we mark the modified entries with stars, we

Bindel, Fall 2022 Matrix Computations

have

∗ ∗ ∗
0 × × ×
0 × × × ×

× × × × ×
× × × × ×

.
× × × × ×

× × × ×
× × ×

.

The entries multiplied in the Schur complement update are those in the
(2 : b)× (2 : b) block

∗ ∗ ∗
0 ∗ ∗ ×
0 ∗ ∗ × ×

× × × × ×
× × × × ×

.
× × × × ×

× × × ×
× × ×

.

We now observe that the Schur complement continues to have bandwidth b,
and so this same pattern will repeat throughout the factorization.

Nonsymmetric band solvers may involve pivoting, but even then the band
structure cannot increase by very much. In each case, by using compact
representations of band matrices, we can compute an LU or Cholesky fac-
torization using O(nb2) time and O(nb) space. And, once the factorization
is computed, forward and backward substitution steps then take O(nb) time
as well.

A generalization of band solvers is the profile or skyline solver. In a row-
oriented skyline format in the case where we are tracking the lower triangle,
we keep each row of the lower triangle consecutively in memory, and sep-
arately keep the index of the start of each row. In each column, the first
nonzero defines the start of the profile. With this convention, all fill-in with
a band solver is again confined to the profile.

Bindel, Fall 2022 Matrix Computations

2 General sparse direct methods
Suppose A is a general sparse matrix, and PA = LU . Will L and U also be
sparse? The answer depends in a somewhat complicated way on the structure
of the graph associated with the matrix A, the pivot order, and the order in
which variables are eliminated. Except in very special circumstances, there
will generally be more nonzeros in L and U than there are in A; these extra
nonzeros are referred to as fill. There are two standard ideas for minimizing
fill:

1. Apply a fill-reducing ordering to the variables; that is, use a factoriza-
tion

PAQ = LU,

where Q is a column permutation chosen to approximately minimize
the fill in L and U , and P is the row permutation used for stability.
The problem of finding an elimination order that minimizes fill is NP-
hard, so it is hard to say that any ordering strategy is really optimal.
But there is canned software for some heuristic orderings that tend to
work well in practice. From a practical perspective, then, the important
thing is to remember that a fill-reducing elimination order tends to be
critical to using sparse Gaussian elimination in practice.

2. Relax the standard partial pivoting condition, choosing the row per-
mutation P to balance the desire for numerical stability against the
desire to minimize fill.

For the rest of this lecture, we will consider the simplified case of struc-
turally symmetric matrices and factorization without pivoting (which you
know from last week’s guest lectures is stable for diagonally dominant sys-
tems and positive definite systems).

3 Sparse matrices, graphs, and tree elimina-
tion

Consider the following illustrative example of how factoring a sparse matrix
can lead to more or less dense factors depending on the order of elimination.

Bindel, Fall 2022 Matrix Computations

Putting in × to indicate a nonzero element, we have
× × × × ×
× ×
× ×
× ×
× ×

 =

×
× ×
× × ×
× × × ×
× × × × ×

× × × × ×

× × × ×
× × ×

× ×
×

 .

That is, L and U have many more nonzeros than A. These nonzero locations
that appear in L and U and not in A are called fill-in. On the other hand,
if we cyclically permute the rows and columns of A, we have

× ×
× ×

× ×
× ×

× × × × ×

 =

×

×
×

×
× × × × ×

× ×

× ×
× ×

× ×
×

 .

That is, the factorization of PAP T has no fill-in.
A sparse matrix A can be viewed as an adjacency matrices for an asso-

ciated graphs: make one node for each row, and connect node i to node j if
Aij ̸= 0. The graphs for the two “arrow” matrices above are:

1

2 3 4 5
5

1 2 3 4

These graphs of both our example matrices are trees, and they differ only
in how the nodes are labeled. In the original matrix, the root node is assigned
the first label; in the second matrix, the root node is labeled after all the
children. Clearly, the latter label order is superior for Gaussian elimination.
This turns out to be a general fact: if the graph for a (structurally symmetric)
sparse matrix S is a tree, and if the labels are ordered so that each node
appears after any children it may have, then there is no fill-in: that is, L and
U have nonzeros only where S has nonzeros.

Bindel, Fall 2022 Matrix Computations

Why should we have no fill when factoring a matrix for a tree ordered
from the leaves up? To answer this, we think about what happens in the
first step of Gaussian elimination. Our original matrix has the form

S =

[
α wT

v S22

]
The first row of U is identical to the first row of S, and the first column of L
has the same nonzero structure as the first column of A, so we are fine there.
The only question is about the nonzero structure of the Schur complement
S22 − vwT/α. Note that the update vwT/α has nonzeros only where vi and
wj are both nonzero — that is, only when nodes i and j are both connected
to node 1. But node 1 is a leaf node; the only thing it connects to is its
parent! So if p is the index of the parent of node 1 in the tree, then we only
change the (p, p) entry of the trailing submatrix during the update — and
we assume that entry is already nonzero. Thus, the graph associated with
the Schur complement is the same as the graph of the original matrix, but
with one leaf trimmed off.

4 Nested dissection
Tree-structured matrices are marvelous because we can do everything in O(n)
time: we process the tree from the leaves to the root in order to compute
L and U , then recurse from the root to the leaves in order to do back sub-
stitution with U , and then go back from the leaves to the root in order to
do forward substitution with L. Sadly, many of the graphs we encounter in
practice do not look like trees. However, we can often profitably think of
clustering nodes so that we get a block structure associated with a tree.

For illustrative purposes, let us consider Gaussian elimination on a matrix
whose graph is a regular n×n mesh. Such a matrix might arise, for example,
if we were solving Poisson’s equation using a standard five-point stencil to
discretize the Laplacian operator. We then think of cutting the mesh in half
by removing a set of separator nodes, cutting the halves in half, and so forth.
This yields a block structure of a tree consisting of a root (the separator
nodes) and two children (the blocks on either side of the separator). We can
now dissect each of the sub-blocks with a smaller separator, and continue on
in this fashion until we have cut the mesh into blocks containing only a few

Bindel, Fall 2022 Matrix Computations

nodes each. Figure 1 illustrates the first two steps in this process of nested
dissection.

We can get a lower bound on the cost of the factorization by figuring out
the cost of factoring the Schur complement associated with G, C, F , etc. Af-
ter we eliminate everything except the nodes associated with G, we pay about
2n3/3 flops to factor the remaining (dense) n-by-n Schur complement matrix
G. Similarly, we pay about 2(n/2)3/3 time to factor the dense (n/2)-by-
(n/2) complements associated with the separators C and F . Eliminating all
four separators then costs a total of ≈ 10n3/12 flops. Now, think of applying
nested dissection to blocks A, B, D, and E; eliminating the Shur comple-
ments associated with separators inside each of these blocks will take about
5(n/2)3/6 flops; all four together cost a total of 4(5(n/2)3/6) = (1/2)(5n3/6)
flops to factor. If we keep recursing, we find that the cost of factoring Schur
complements associated with all the separators looks like

5

6
n3

(
1 +

1

2
+

1

4
+ . . .

)
≈ 5

3
n3.

It turns out that forming each Schur complement is asymptotically not more
expensive than eliminating it, so that the overall cost of doing nested dissec-
tion on an n × n mesh with N = n2 unknown is also O(n3) = O(N1.5). It
also turns out that the fill-in is O(N logN)1.

Now think about doing the same thing with a three-dimensional mesh.
In this case, the top-level separators for an n × n × n mesh with N = n3

unknowns would involve n2 unknowns, and we would take O(n6) = O(N2)
time to do the elimination, and O(N4/3) fill. This relatively poor scaling
explains why sparse direct methods are attractive for solving 2D PDEs, but
are less popular for 3D problems.

5 Sparse solvers in practice
Well-tuned sparse elimination codes do not have quite the flop rate of dense
linear algebra, but they are nonetheless often extremely fast. In order to get
this speed, though, quite a bit of engineering is needed. In the remainder

1The explanation of why is not so hard, at least for regular 2D meshes, but it requires
more drawing than I feel like at the moment. The paper “Nested Dissection of a Regular
Finite Element Mesh” by Alan George (SIAM J. Numer. Anal. 10(2), April 1973) gives a
fairly readable explanation for the curious.

Bindel, Fall 2022 Matrix Computations

G

A

B

C

D

E

F

S =

SAA SAC SAG

SBB SBC SBG

SCA SCB SCC SCG

SDD SDF SDG

SEE SEF SEG

SFD SFE SFF SFG

SGA SGB SGC SGD SGE SGF SGG

Figure 1: Nested dissection on a square mesh. We first cut the graph in half
with the red separator G, then further dissect the halves with the blue sepa-
rators C and F . Nodes in A, B, D, and F are only connected through these
separator nodes, which is reflected in the sparsity pattern of the adjacency
matrix S when it is ordered so that separators appear after the things they
separate.

Bindel, Fall 2022 Matrix Computations

of these notes, we sketch some of these engineering aspects – but we do so
largely to convince you that you are better off using someone else’s sparse
solver code than rolling your own! If you want all the gory details, I highly
recommend Tim Davis’s book Direct Methods for Sparse Linear Systems (a
SIAM publication that is available in electronic form through the Cornell
library).

5.1 Symbolic factorization
Typical sparse Cholesky codes involve two stages: a symbolic factorization
stage in which the nonzero structure of the factors is computed, and a nu-
merical factorization stage in which we fill in that nonzero structure with
actual numbers. One advantage of this two-stage approach is that we can
re-use the symbolic factorization when we are faced with a series of matri-
ces that all have the same nonzero structure. This happens frequently in
nonlinear PDE solvers, for example: the Jacobian of the discretized problem
changes at each solver step (or each time step), but the nonzero structure
often remains fixed.

5.2 (Approximate) minimum degree ordering
When we have a clear geometry, nested dissection ordering can be very useful.
Indeed, nested dissection is useful in some cases even when we have “lost”
the geometry – we can use spectral methods (which we will describe later in
the course) to find small separators in the graph. But in some cases, there
is no obvious geometry, or we don’t want to pay the cost of computing a
nested dissection ordering. In this case, a frequent alternative approach is a
minimum degree ordering. The idea of minimum degree ordering is to search
the Schur complement graph for the node with smallest degree, since the fill
on eliminating that variable is bounded by the square of the degree. Then
we eliminate the vertex, update the degrees of the neighbors, and repeat.
Unfortunately, this is expensive to implement in the way described here –
better variants (using quotient graphs) are more frequently used in practice.

5.3 Cache locality
In order to get good use of level 3 BLAS, sparse direct factorization routines
often identify dense “supernodal” structure in the factor. We have already

Bindel, Fall 2022 Matrix Computations

seen one case where this happens in our discussion of nested dissection: we get
dense blocks arising from separator Schur complements. The main alternative
to supernodal solvers is the family of multifrontal solvers, which also are able
to take advantage of level 3 BLAS.

5.4 Elimination trees and parallelism
An elimination tree in Gaussian elimination (or Cholesky) is a tree on n
nodes, one per column or variable. We say j is a descendant of k if eliminat-
ing j updates node k. The nice thing about this structure is that it identifies
opportunities for parallelism: disjoint subtrees of the elimination tree do not
directly interact, and can be eliminated in parallel in the numerical factor-
ization.

	Band and skyline solvers
	General sparse direct methods
	Sparse matrices, graphs, and tree elimination
	Nested dissection
	Sparse solvers in practice
	Symbolic factorization
	(Approximate) minimum degree ordering
	Cache locality
	Elimination trees and parallelism

