
Bindel, Fall 2022 Matrix Computations

2022-09-13

1 Diagonally dominant matrices
A matrix A is strictly (column) diagonally dominant if for each column j,

|ajj| >
∑
i ̸=j

|aij|.

If we write A = D+ F where D is the diagonal and F the off-diagonal part,
strict column diagonal dominance is equivalent to the statement that

∥FD−1∥1 < 1.

Note that we may factor A as
A = (I + FD−1)D

with D invertible because the diagonal elements are bounded below by zero
and I+FD−1 invertible by a Neumann series bound. Therefore A is invertible
if it is strictly column diagonally dominant.

Strict diagonal dominance is a useful structural condition for several rea-
sons: it ensures nonsingularity, it guarantees convergence of certain iterative
methods (we will return to this later), and it guarantees that LU factor-
ization can be done without pivoting. In fact, Gaussian elimination without
partial pivoting is guaranteed not to even attempt pivoting! To see this, note
that the statement is obvious for the first step: column diagonal dominance
implies that a11 is the largest magnitude element in the first column. What
does the Schur complement look like after one step of Gaussian elimination?
By a short computation, it turns out that the Schur complement is again
diagonally dominant (see GVL section 4.1.1).

Diagonally dominant matrices and symmetric positive definite matrices
are the two major classes of matrices for which unpivoted Gaussian elimina-
tion is backward stable.

2 Symmetric matrices
2.1 Quadratic forms
A matrix A is symmetric if A = AT . For each symmetric matrix A, there is an
associated quadratic form xTAx. Even if you forgot them from our lightning

Bindel, Fall 2022 Matrix Computations

review of linear algebra, you are likely familiar with quadratic forms from a
multivariate calculus class, where they appear in the context of the second
derivative test. One expands

F (x+ u) = F (x) + F ′(x)u+
1

2
uTH(x)u+O(∥u∥3),

and notes that at a stationary point where F ′(x) = 0, the dominant term
is the quadratic term. When H is positive definite or negative definite, x is
a strong local minimum or maximum, respectively. When H is indefinite,
with both negative and positive eigenvalues, x is a saddle point. When H is
semi-definite, one has to take more terms in the Taylor series to determine
whether the point is a local extremum.

If B is a nonsingular matrix, then we can write x = By and xTAx =
yT (BTAB)y. So an “uphill” direction for A corresponds to an “uphill” di-
rection for BTAB; and similarly with downhill directions. More generally, A
and BTAB have the same inertia, where the inertia of a symmetric A is the
triple

(# pos eigenvalues,# zero eigenvalues,# neg eigenvalues).

Now suppose that A = LU , where L is unit lower triangular and U
is upper triangular. If we let D be the diagonal part of U , we can write
A = LDMT , where L and M are both unit lower triangular matrices. Noting
that AT = (LDMT)T = MDLT = M(LD)T and that the LU factorization
of a matrix is unique, we find M = L and LD = DMT = U . Note that D
has the same inertia as A.

The advantage of the LDLT factorization over the LU factorization is
that we need only compute and store one triangular factor, and so LDLT

factorization costs about half the flops and storage of LU factorization. We
have the same stability issues for LDLT factorization that we have for ordi-
nary LU factorization, so in general we might compute

PAP T = LDLT ,

where the details of various pivoting schemes are described in the book.

2.2 Positive definite matrices
A symmetric matrix is positive definite if xTAx > 0 for all nonzero x. If A
is symmetric and positive definite, then A = LDLT where D has all positive

Bindel, Fall 2022 Matrix Computations

elements (because A and D have the same inertia). Thus, we can write
A = (LD1/2)(LD1/2)T = L̂L̂T . The matrix L̂ is a Cholesky factor of A.

There are several useful properties of SPD matrices that we will use from
time to time:

1. The inverse of an SPD matrix is SPD.
Proof: If xTAx > 0 for all x ̸= 0, then we cannot have Ax = 0 for
nonzero x. So A is necessarily nonsingular. Moreover,

xTA−1x = (A−1x)TA(A−1x)

must be positive for nonzero x by positive-definiteness of A. Therefore,
A−1 is SPD.

2. Any minor of an SPD matrix is SPD.
Proof: Without loss of generality, let M = A11. Then for any appro-
priately sized x,

xTMx =

[
x
0

]T
A

[
x
0

]
> 0

for x ̸= 0. Therefore, M is positive definite.

3. Any Schur complement of an SPD matrix is SPD
Proof: A Schur complement in A is the inverse of a minor of an
inverse of A. By the two arguments above, this implies that any Schur
complement of an SPD matrix is SPD.

4. If M is a minor of A, κ2(M) ≤ κ2(A).
Proof: The largest and smallest singular values of an SPD matrix are
the same as the largest and smallest eigenvalues; they can be written
as

σ1(A) = max
∥x∥2=1

xTAx, σmin(A) = min
∥x∥2=1

xTAx.

Without loss of generality, let M = A11. Then

σ1(M) = max
∥x∥2=1

xTMx = max
∥x∥2=1

[
x
0

]T
A

[
x
0

]
≤ max

∥z∥2=1
zTAz = σ1(A)

and similarly σmin(M) ≥ σmin(A). The condition numbers are therefore

κ2(M) =
σ1(M)

σmin(M)
≤ σ1(A)

σmin(A)
= κ2(A).

Bindel, Fall 2022 Matrix Computations

5. If S is a Schur complement in A, κ2(S) ≤ κ2(A).
Proof: This is left as an exercise.

3 Cholesky
The algorithm to compute the Cholesky factor of an SPD matrix is close to
the Gaussian elimination algorithm. In the first step, we would write[

a11 aT21
a21 A22

]
=

[
l11 0
l21 L22

] [
l11 lT21
0 LT

22

]
,

or

a11 = l211
a21 = l21l11

A22 = L22L
T
22 + l21l

T
21.

The first two equations allow us to compute the first column of L; the last
equation tells us that the rest of L is the Cholesky factor of a Schur com-
plement, L22L

T
22 = A22 − l21l

T
21. Continuing in this fashion, we have the

algorithm
1 #
2 # Overwrite with Cholesky factorization
3 #
4 function mychol(A)
5 A = copy(A)
6 n = size(A)[1]
7 for j = 1:n
8 if A[j,j] < 0.0
9 error("Indefinite matrix")

10 end
11 A[j,j] = sqrt(A[j,j])
12 A[j+1:end,j] /= A[j,j]
13 A[j+1:end,j+1:end] -= A[j+1:end,j]*A[j+1:end,j]'
14 end
15 LowerTriangular(A)
16 end

Like the nearly-identical Gaussian elimination algorithm, we can rewrite the
Cholesky algorithm in block form for better cache use. Unlike Gaussian

Bindel, Fall 2022 Matrix Computations

elimination, we do just fine using Cholesky without pivoting1.

4 Iterative refinement
If we have a solver for Â = A + E with E small, then we can use iterative
refinement to “clean up” the solution. The matrix Â could come from finite
precision Gaussian elimination of A, for example, possibly with a less strin-
gent pivoting strategy than partial pivoting. Or it might come from some
factorization of a nearby “easier” matrix. To get the refinement iteration, we
take the equation

(1) Ax = Âx− Ex = b,

and think of x as the fixed point for an iteration

(2) Âxk+1 − Exk = b.

Note that this is the same as

Âxk+1 − (Â− A)xk = b,

or
xk+1 = xk + Â−1(b− Axk).

If we subtract (1) from (2), we see

Â(xk+1 − x)− E(xk − x) = 0,

or
xk+1 − x = Â−1E(xk − x).

Taking norms, we have

∥xk+1 − x∥ ≤ ∥Â−1E∥∥xk − x∥.

Thus, if ∥Â−1E∥ < 1, we are guaranteed that xk → x as k → ∞. In fact,
this holds even if the backward error varies from step to step, as long as it
satisfies some uniform bound that is less than one. At least, this is what
happens in exact arithmetic.

1Pivoting can still be useful for near-singular matrices, but unpivoted Cholesky is back-
ward stable

Bindel, Fall 2022 Matrix Computations

In practice, the residual is usually computed with only finite precision,
and so we would stop making progress at some point — usually at the point
where we have a truly backward stable solution. In general, iterative refine-
ment is mainly used when either the residual can be computed with extra
precision or when the original solver suffers from relatively large backward
error.

In floating point arithmetic, we actually compute something like

xk+1 = xk + Â−1
k (b− Axk + δk) + µk,

where Âk = A + Ek accounts for the backward error Ek in the approximate
solve, δk is an error associated with computing the residual, and µk is an
error associated with the update. This gives us the error recurrence

ek+1 = Â−1
k Ekek + Â−1δk + µk

If ∥δk∥ < α, ∥µk∥ < β, and ∥A−1Ek∥ < γ < 1 for all k, then we can show
that

∥xk − x∥ ≤ γk∥x0 − x∥+ α∥A−1∥+ β

1− γ
.

If we evaluate the residual in the obvious way, we typically have

α ≤ c1ϵmach∥A∥∥x∥,
β ≤ c2ϵmach∥x∥,

for some modest c1 and c2; and for large enough k, we end up with

∥xk − x∥
∥x∥

≤ C1ϵmachκ(A) + C2ϵmach.

That is, iterative refinement leads to a relative error not too much greater
than we would expect due to a small relative perturbation to A; and we can
show that in this case the result is backward stable. And if we use mixed
precision to evaluate the residual accurately enough relative to κ(A) (i.e.
ακ(A) ≲ β) we can actually achieve a small forward error.

5 Condition estimation
Suppose now that we want to compute κ1(A) (or κ∞(A) = κ1(A

T)). The
most obvious approach would be to compute A−1, and then to evaluate

Bindel, Fall 2022 Matrix Computations

∥A−1∥1 and ∥A∥1. But the computation of A−1 involves solving n linear
systems for a total cost of O(n3) — the same order of magnitude as the
initial factorization. Error estimates that cost too much typically don’t get
used, so we want a different approach to estimating κ1(A), one that does not
cost so much. The only piece that is expensive is the evaluation of ∥A−1∥1,
so we will focus on this.

Note that ∥A−1x∥1 is a convex function of x, and that ∥x∥1 ≤ 1 is a
convex set. So finding

∥A−1∥1 = max
∥x∥1≤1

∥A−1x∥1

is a convex optimization problem. Also, note that ∥ · ∥1 is differentiable
almost everywhere: if all the components of y are nonzero, then

ξTy = ∥y∥1, for ξ = sign(y);

and if δy is small enough so that all the components of y+ δy have the same
sign as the corresponding components of y, then

ξT (y + δy) = ∥y + δy∥1

More generally, we have

ξTu ≤ ∥ξ∥∞∥u∥1 = ∥u∥1,

i.e. even when δy is big enough so that the linear approximation to ∥y+δy∥1
no longer holds, we at least have a lower bound.

Since y = A−1x, we actually have that

|ξTA−1(x+ δx)| ≤ ∥A−1(x+ δx)∥,

with equality when δx is sufficiently small (assuming y has no zero compo-
nents). This suggests that we move from an initial guess x to a new guess
xnew by maximizing

|ξTA−1xnew|

over ∥xnew∥ ≤ 1. This actually yields xnew = ej, where j is chosen so that
the jth component of zT = ξTA−1 has the greatest magnitude.

Putting everything together, we have the following algorithm

Bindel, Fall 2022 Matrix Computations

1 function hager(n, solveA, solveAT)
2 x = ones(n)/n
3 invA_normest = 0.0
4 while true
5

6 y = solveA(x) # Evaluate y = A^-1 x
7 xi = sign.(y) # and z = A^-T sign(y), the
8 z = solveAT(xi) # subgradient of x -> |A^-1 x|_1
9

10 # Find the largest magnitude component of z
11 znorm, j = findmax(abs.(z))
12

13 # Check for convergence
14 if znorm <= dot(z,x)
15 return norm(y,1)
16 end
17

18 # Update x to e_j and repeat
19 x[:] .= 0.0
20 x[j] = 1.0
21

22 end
23 invA_normest
24 end

This method is not infallible, but it usually gives estimates that are the
right order of magnitude. There are various alternatives, refinements, and
extensions to Hager’s method, but they generally have the same flavor of
probing A−1 through repeated solves with A and AT .

6 Scaling
Suppose we wish to solve Ax = b where A is ill-conditioned. Sometimes, the
ill-conditioning is artificial because we made a poor choice of units, and it
appears to be better conditioned if we write

D1AD2y = D1b,

where D1 and D2 are diagonal scaling matrices. If the original problem was
poorly scaled, we will likely find κ(D1AD2) ≪ κ(A), which may be great for
Gaussian elimination. But by scaling the matrix, we are really changing the
norms that we use to measure errors — and that may not be the right thing
to do.

Bindel, Fall 2022 Matrix Computations

For physical problems, a good rule of thumb is to non-dimensionalize
before computing. The non-dimensionalization will usually reveal a good
scaling that (one hopes) simultaneously is appropriate for measuring errors
and does not lead to artificially inflated condition numbers.

	Diagonally dominant matrices
	Symmetric matrices
	Quadratic forms
	Positive definite matrices

	Cholesky
	Iterative refinement
	Condition estimation
	Scaling

