
Bindel, Fall 2022 Matrix Computations

2022-09-08

1 Introduction
For the next few lectures, we will explore methods to solve linear systems.
Our main tool will be the factorization PA = LU , where P is a permutation,
L is a unit lower triangular matrix, and U is an upper triangular matrix.
As we will see, the Gaussian elimination algorithm learned in a first linear
algebra class implicitly computes this decomposition; but by thinking about
the decomposition explicitly, we can come up with other organizations for
the computation.

We emphasize a few points up front:
• Some matrices are singular. Errors in this part of the class often involve

attempting to invert a matrix that has no inverse. A matrix does not
have to be invertible to admit an LU factorization. We will also see
more subtle problems from almost singular matrices.

• Some matrices are rectangular. In this part of the class, we will deal
almost exclusively with square matrices; if a rectangular matrix shows
up, we will try to be explicit about dimensions. That said, LU fac-
torization makes sense for rectangular matrices as well as for square
matrices — and it is sometimes useful.

• inv is evil. The inv command is one of the most abused commands
in Matlab. The Matlab backslash operator is the preferred way to
solve a linear system absent other information:

1 x = A \ b; % Good
2 x = inv(A) * b; % Evil

Homework solutions that feature inappropriate explicit inv commands
will lose points.

• LU is not for linear solves alone. One can solve a variety of other
interesting problems with an LU factorization.

• LU is not the only way to solve systems. Gaussian elimination and
variants will be our default solver, but there are other solver methods
that are appropriate for problems with more structure. We will touch
on other methods throughout the class.

Bindel, Fall 2022 Matrix Computations

2 Gaussian elimination by example
Let’s start our discussion of LU factorization by working through these ideas
with a concrete example:

A =

1 4 7
2 5 8
3 6 10

 .

To eliminate the subdiagonal entries a21 and a31, we subtract twice the first
row from the second row, and thrice the first row from the third row:

A(1) =

1 4 7
2 5 8
3 6 10

−

0 · 1 0 · 4 0 · 7
2 · 1 2 · 4 2 · 7
3 · 1 3 · 4 3 · 7

 =

1 4 7
0 −3 −6
0 −6 −11

 .

That is, the step comes from a rank-1 update to the matrix:

A(1) = A−

02
3

 [1 4 7
]
.

Another way to think of this step is as a linear transformation A(1) = M1A,
where the rows of M1 describe the multiples of rows of the original matrix
that go into rows of the updated matrix:

M1 =

 1 0 0
−2 1 0
−3 0 1

 = I −

02
3

 [1 0 0
]
= I − τ1e

T
1 .

Similarly, in the second step of the algorithm, we subtract twice the second
row from the third row:1 4 7
0 −3 −6
0 0 1

 =

1 0 0
0 1 0
0 −2 1

1 4 7
0 −3 −6
0 −6 −11

 =

I −

00
2

 [0 1 0
]A(1).

More compactly: U = (I − τ2e
T
2)A

(1).
Putting everything together, we have computed

U = (I − τ2e
T
2)(I − τ1e

T
1)A.

Bindel, Fall 2022 Matrix Computations

Therefore,
A = (I − τ1e

T
1)

−1(I − τ2e
T
2)

−1U = LU.

Now, note that

(I − τ1e
T
1)(I + τ1e

T
1) = I − τ1e

T
1 + τ1e

T
1 − τ1e

T
1 τ1e

T
1 = I,

since eT1 τ1 (the first entry of τ1) is zero. Therefore,

(I − τ1e
T
1)

−1 = (I + τ1e
T
1)

Similarly,
(I − τ2e

T
2)

−1 = (I + τ2e
T
2)

Thus,
L = (I + τ1e

T
1)(I + τ2e

T
2).

Now, note that because τ2 is only nonzero in the third element, eT1 τ2 = 0;
thus,

L = (I + τ1e
T
1)(I + τ2e

T
2)

= (I + τ1e
T
1 + τ2e

T
2 + τ1(e

T
1 τ2)e

T
2

= I + τ1e
T
1 + τ2e

T
2

=

1 0 0
0 1 0
0 0 1

+

0 0 0
2 0 0
3 0 0

+

0 0 0
0 0 0
0 2 0

 =

1 0 0
2 1 0
3 2 1

 .

The final factorization is

A =

1 4 7
2 5 8
3 6 10

 =

1 0 0
2 1 0
3 2 1

1 4 7
0 −3 −6
0 0 1

 = LU.

Note that the subdiagonal elements of L are easy to read off: for j > i,
lij is the multiple of row j that we subtract from row i during elimination.
This means that it is easy to read off the subdiagonal entries of L during the
elimination process.

Bindel, Fall 2022 Matrix Computations

3 Basic LU factorization
Let’s generalize our previous algorithm and write a simple code for LU fac-
torization. We will leave the issue of pivoting to a later discussion. We’ll
start with a purely loop-based implementation:

1 #
2 # Compute LU factors in separate storage
3 #
4 function mylu_v1(A)
5 n = size(A)[1]
6 L = Matrix(1.0I, n, n)
7 U = copy(A)
8 for j = 1:n-1
9 for i = j+1:n

10

11 # Figure out multiple of row j to subtract from row i
12 L[i,j] = U[i,j]/U[j,j]
13

14 # Subtract off the appropriate multiple of row j from row i
15 U[i,j] = 0.0
16 for k = j+1:n
17 U[i,k] -= L[i,j]*U[j,k]
18 end
19 end
20 end
21 L, U
22 end

Note that we can write the two innermost loops more concisely by thinking
of them in terms of applying a Gauss transformation Mj = I−τje

T
j , where τj

is the vector of multipliers that appear when eliminating in column j. Also,
note that in LU factorization, the locations where we write the multipliers
in L are exactly the same locations where we introduce zeros in A as we
transform to U . Thus, we can re-use the storage space for A to store both L
(except for the diagonal ones, which are implicit) and U . Using this strategy,
we have the following code:

1 #
2 # Compute LU factors in packed storage
3 #
4 function mylu_v2(A)
5 n = size(A)[1]
6 A = copy(A)
7 for j = 1:n-1

Bindel, Fall 2022 Matrix Computations

8 A[j+1:n,j] /= A[j,j] # Form vector of multipliers
9 A[j+1:n,j+1:n] -= A[j+1:n,j]*A[j,j+1:n]' # Update Schur complement

10 end
11 UnitLowerTriangular(A), UpperTriangular(A)
12 end

The bulk of the work at step j of the elimination algorithm is in the
computation of a rank-one update to the trailing submatrix. How much
work is there in total? In eliminating column j, we do (n−j)2 multiplies and
the same number of subtractions; so in all, the number of multiplies (and
adds) is

n−1∑
j=1

(n− j)2 =
n−1∑
k=1

k2 =
1

3
n3 +O(n2)

We also perform O(n2) divisions. Thus, Gaussian elimination, like matrix
multiplication, is an O(n3) algorithm operating on O(n2) data.

4 Schur complements
The idea of expressing a step of Gaussian elimination as a low-rank subma-
trix update turns out to be sufficiently useful that we give it a name. At
any given step of Gaussian elimination, the trailing submatrix is called a
Schur complement. We investigate the structure of the Schur complements
by looking at an LU factorization in block 2-by-2 form:[

A11 A12

A21 A22

]
=

[
L11 0
L21 L22

] [
U11 U12

0 U22

]
=

[
L11U11 L11U12

L21U11 L22U22 + L21U12

]
.

We can compute L11 and U11 as LU factors of the leading sub-block A11, and

U12 = L−1
11 A12

L21 = A21U
−1
11 .

What about L22 and U22? We have

L22U22 = A22 − L21U12

= A22 − A21U
−1
11 L

−1
11 A12

= A22 − A21A
−1
11 A12.

Bindel, Fall 2022 Matrix Computations

This matrix S = A22−A21A
−1
11 A12 is the block analogue of the rank-1 update

computed in the first step of the standard Gaussian elimination algorithm.
For our purposes, the idea of a Schur complement is important because it

will allow us to write blocked variants of Gaussian elimination — an idea we
will take up in more detail shortly. But the Schur complement actually has
meaning beyond being a matrix that mysteriously appears as a by-product
of Gaussian elimination. In particular, note that if A and A11 are both
invertible, then [

A11 A12

A21 A22

] [
X
S−1

]
=

[
0
I

]
,

i.e. S−1 is the (2, 2) submatrix of A−1.

5 Blocked Gaussian elimination
Just as we could rewrite matrix multiplication in block form, we can also
rewrite Gaussian elimination in block form. For example, if we want[

A11 A12

A21 A22

]
=

[
L11 0
L21 L22

] [
U11 U12

0 U22

]
then we can write Gaussian elimination as:

1. Factor A11 = L11U11.

2. Compute L21 = A21U
−1
11 and U12 = L−1

11 A12.

3. Form the Schur complement S = A22 − L21U12 and factor L22U22 = S.

This same idea works for more than a block 2-by-2 matrix. As with
matrix multiply, thinking about Gaussian elimination in this blocky form
lets us derive variants that have better cache efficiency. Notice that all the
operations in this blocked code involve matrix-matrix multiplies and multiple
back solves with the same matrix. These routines can be written in a cache-
efficient way, since they do many floating point operations relative to the
total amount of data involved.

Though some of you might make use of cache blocking ideas in your
own work, most of you will never try to write a cache-efficient Gaussian
elimination routine of your own. The routines in LAPACK and Julia (really
the same routines) are plenty efficient, so you would most likely turn to them.

Bindel, Fall 2022 Matrix Computations

Still, it is worth knowing how to think about block Gaussian elimination,
because sometimes the ideas can be specialized to build fast solvers for linear
systems when there are fast solvers for sub-matrices

For example, consider the bordered matrix

A =

[
B W
V T C

]
,

where B is an n-by-n matrix for which we have a fast solver and C is a p-by-p
matrix, p ≪ n. We can factor A into a product of block lower and upper
triangular factors with a simple form:[

B W
V T C

]
=

[
B 0
V T L22

] [
I B−1W
0 U22

]
where L22U22 = C − V TB−1W is an ordinary (small) factorization of the
trailing Schur complement. To solve the linear system[

B W
V T C

] [
x1

x2

]
=

[
b1
b2

]
,

we would then run block forward and backward substitution:

y1 = B−1b1

y2 = L−1
22

(
b2 − V Ty1

)
x2 = U−1

22 y2

x1 = y1 − B−1(Wx2)

6 Backward error in Gaussian elimination
Solving Ax = b in finite precision using Gaussian elimination followed by
forward and backward substitution yields a computed solution x̂ exactly sat-
isfies

(1) (A+ δA)x̂ = b,

where |δA| ≲ 3nϵmach|L̂||Û |, assuming L̂ and Û are the computed L and U
factors.

Bindel, Fall 2022 Matrix Computations

I will now briefly sketch a part of the error analysis following Demmel’s
treatment (§2.4.2). Mostly, this is because I find the treatment in §3.3.1 of
Van Loan less clear than I would like – but also, the bound in Demmel’s book
is marginally tighter. Here is the idea. Suppose L̂ and Û are the computed
L and U factors. We obtain ûjk by repeatedly subtracting ljiuik from the
original ajk, i.e.

ûjk = fl

(
ajk −

j−1∑
i=1

l̂jiûik

)
.

Regardless of the order of the sum, we get an error that looks like

ûjk = ajk(1 + δ0)−
j−1∑
i=1

l̂jiûik(1 + δi) +O(ϵ2mach)

where |δi| ≤ (j − 1)ϵmach. Turning this around gives

ajk =
1

1 + δ0

(
l̂jjûjk +

j−1∑
i=1

l̂jiûik(1 + δi)

)
+O(ϵ2mach)

= l̂jjûjk(1− δ0) +

j−1∑
i=1

l̂jiûik(1 + δi − δ0) +O(ϵ2mach)

=
(
L̂Û
)
jk
+ ejk,

where

ejk = −l̂jjûjkδ0 +

j−1∑
i=1

l̂jiûik(δi − δ0) +O(ϵ2mach)

is bounded in magnitude by (j − 1)ϵmach(|L||U |)jk + O(ϵ2mach)
1. A similar

argument for the components of L̂ yields

A = L̂Û + E, where |E| ≤ nϵmach|L̂||Û |+O(ϵ2mach).

In addition to the backward error due to the computation of the LU
factors, there is also backward error in the forward and backward substitution
phases, which gives the overall bound (1).

1It’s obvious that ejk is bounded in magnitude by 2(j − 1)ϵmach(|L||U |)jk +O(ϵ2mach).
We cut a factor of two if we go down to the level of looking at the individual rounding
errors during the dot product, because some of those errors cancel.

Bindel, Fall 2022 Matrix Computations

7 Pivoting
The backward error analysis in the previous section is not completely satis-
factory, since |L||U | may be much larger than |A|, yielding a large backward
error overall. For example, consider the matrix

A =

[
δ 1
1 1

]
=

[
1 0
δ−1 1

] [
δ 1
0 1− δ−1

]
.

If 0 < δ ≪ 1 then ∥L∥∞∥U∥∞ ≈ δ−2, even though ∥A∥∞ ≈ 2. The problem
is that we ended up subtracting a huge multiple of the first row from the
second row because δ is close to zero — that is, the leading principle minor
is nearly singular. If δ were exactly zero, then the factorization would fall
apart even in exact arithmetic. The solution to the woes of singular and near
singular minors is pivoting; instead of solving a system with A, we re-order
the equations to get

Â =

[
1 1
δ 1

]
=

[
1 0
δ 1

] [
1 1
0 1− δ

]
.

Now the triangular factors for the re-ordered system matrix Â have very
modest norms, and so we are happy. If we think of the re-ordering as the
effect of a permutation matrix P , we can write

A =

[
δ 1
1 1

]
=

[
0 1
1 0

] [
1 0
δ 1

] [
1 1
0 1− δ

]
= P TLU.

Note that this is equivalent to writing PA = LU where P is another permu-
tation (which undoes the action of P T).

If we wish to control the multipliers, it’s natural to choose the permuta-
tion P so that each of the multipliers is at most one. This standard choice
leads to the following algorithm:

1 #
2 # Compute partial pivoted LU factors in packed storage
3 #
4 function mypivlu(A)
5 n = size(A)[1]
6 A = copy(A)
7 p = Vector(1:n)
8 for j = 1:n-1

Bindel, Fall 2022 Matrix Computations

9

10 # Find pivot and do a swap
11 _, jj = findmax(abs.(A[j:n,j]))
12 jj += j-1
13 for k = 1:n
14 A[jj,k], A[j,k] = A[j,k], A[jj,k]
15 end
16 p[jj], p[j] = p[j], p[jj]
17

18 # Compute multipliers and update Schur complement
19 A[j+1:n,j] /= A[j,j]
20 A[j+1:n,j+1:n] -= A[j+1:n,j]*A[j,j+1:n]'
21

22 end
23 p, UnitLowerTriangular(A), UpperTriangular(A)
24 end

In practice, we would typically use a strategy of deferred updating: that is,
rather than applying the pivot immediately across all columns, we would only
apply the pivoting within a block of columns. At the end of the block, we
would apply all the pivots simultaneously. As with other blocking strategies
we have discussed, this has no impact on the total amount of work done in
some abstract machine model, but it is much more friendly to the memory
architecture of real machines.

By design, this algorithm produces an L factor in which all the elements
are bounded by one. But what about the U factor? There exist pathological
matrices for which the elements of U grow exponentially with n. But these
examples are extremely uncommon in practice, and so, in general, Gaussian
elimination with partial pivoting does indeed have a small backward error.
Of course, the pivot growth is something that we can monitor, so in the
unlikely event that it does look like things are blowing up, we can tell there
is a problem and try something different. But when problems do occur, it
is more frequently the result of ill-conditioning in the problem than of pivot
growth during the factorization.

8 Beyond partial pivoting
Gaussian elimination with partial pivoting has been the mainstay of linear
system solving for many years. But the partial pivoting strategy is far from
the end of the story! GECP, or Gaussian elimination with complete pivoting

Bindel, Fall 2022 Matrix Computations

(involving both rows and columns), is often held up as the next step beyond
partial pivoting, but this is really a strawman — though complete pivoting
fixes the aesthetically unsatisfactory lack of backward stability in the partial
pivoted variant, the cost of the GECP pivot search is more expensive than is
usually worthwhile in practice. We instead briefly describe two other pivoting
strategies that are generally useful: rook pivoting and tournament pivoting.
Next week, we will also briefly mention threshold pivoting, which is relevant
to sparse Gaussian elimination.

8.1 Rook pivoting
In Gaussian elimination with rook pivoting, we choose a pivot at each step
by choosing the largest magnitude element in the first row or column of
the current Schur complement. This eliminates the possibility of exponential
pivot growth that occurs in the partial pivoting strategy, but does not involve
the cost of searching the entire Schur complement for a pivot (as occurs in
the GECP case).

For the problem of solving linear systems, it is unclear whether rook piv-
oting really holds a practical edge over partial pivoting. The complexity is
not really worse than partial pivoting, but there is more overhead (both in
runtime and in implementation cost) to handle deferred pivoting for perfor-
mance. Where rook pivoting has a great deal of potential is in Gaussian
elimination on (nearly) singular matrices. If A ∈ Rm×n has a large gap be-
tween σk and σk+1 for k < min(m,n), then GERP on A tends to yield the
factorization

PAQ = LU,U =

[
U11 U12
0 U22

]
where U11 ∈ Rk×k and ∥U22∥ is very small (on the order of σk+1).

Rook pivoting and the closely-related threshold rook pivoting are partic-
ularly useful in constrained optimization problems in which constraints can
become redundant. Apart from its speed, the rook pivoting strategy has the
advantage over other rank-revealing factorizations that when A is sparse, as
one can often control the fill (nonzeros in L and U that are not present in A).
The LUSOL package of Michael Saunders is a particularly effective example.

Bindel, Fall 2022 Matrix Computations

8.2 Tournament pivoting
In parallel dense linear algebra libraries, a major disadvantage of partial
pivoting is that the pivot search is a communication bottleneck, even with
deferred pivoting. This is increasingly an issue, as communication between
processors is far more expensive than arithmetic, and (depending on the
matrix layout) GEPP requires communication each time a pivot is selected.
For this reason, a number of recent communication-avoiding LU variants use
an alternate pivoting strategy called tournament pivoting.

The idea behind tournament pivoting is to choose b pivot rows in one go,
rather than iterating between choosing a pivot row and performing elimina-
tion. The algorithm involves each processor proposing several candidate pivot
rows for a heirarchical tournament. There are different methods for managing
this tournament, with different levels of complexity. One intriguing variant,
for example, is the remarkable (though awkwardly named) CALU_PRRP algo-
rithm, which uses rank-revealing QR factorizations to choose the pivots in
the tournament. The CALU_PRRP algorithm does a modest amount of work
beyond what is done by partial pivoting, but has better behavior both in
terms of communication complexity and in terms of numerical stability.

	Introduction
	Gaussian elimination by example
	Basic LU factorization
	Schur complements
	Blocked Gaussian elimination
	Backward error in Gaussian elimination
	Pivoting
	Beyond partial pivoting
	Rook pivoting
	Tournament pivoting

